TRAFFIC IMPACT AND ACCESS STUDY

Retail Motor Fuel Outlet
Exeter, New Hampshire

GPI

181 Ballardvale Street, Suite 202
Wilmington, MA 01887
(978) 570-2999

SUBMITTED TO:

Nouria Energy Corp
326 Clark Street
Worcester, Massachusetts 01606

April 2021

TECHNICAL MEMORANDUM

REF: NEX-2020283.00
DATE: April 20, 2021
TO: Nouria Energy Corp c/o Tom Healey 326 Clark Street Worcester, Massachusetts 01606

FROM: Ms. Heather L. Monticup, P.E., Director of Land Development - Traffic Ms. Susannah E. Theriault, P.E., Project Engineer

RE: \quad Traffic Impact and Access Study
Retail Motor Fuel Outlet 158 Epping Road - Exeter, New Hampshire

INTRODUCTION

Greenman-Pedersen, Inc. (GPI) has prepared this Traffic Impact and Access Study (TIAS) for a proposed retail motor fuel outlet located 158 Epping Road (NH Route 27) in Exeter, New Hampshire. The site is currently occupied by a $\pm 12,190$ square foot (SF) vacant Jaguar auto dealership. The project consists of razing the existing buildings on the site and constructing a retail motor fuel outlet with a $\pm 5,500 \mathrm{SF}$ convenience store, a gasoline station with six (6) Multi-Product Dispensers (MPDs) having twelve (12) vehicle-fueling positions (VFPS), and a $\pm 4,182$ SF automated car wash having one (1) tunnel. Access and egress are proposed via two (2) full access/egress driveways; one on Epping Road (NH Route 27) and one on Continental Drive.

The site is bounded by Continental Drive to the north, Al's Service Center to the south, Epping Road (NH Route 27) to the east, and vacant land to the west. The site location in relation to the surrounding roadways is shown on the map on Figure 1.

EXISTING CONDITIONS

Study Area

Evaluation of the traffic impacts associated with the proposed project requires an evaluation of existing and projected traffic volumes on the adjacent streets, the volume of traffic expected to be generated by the project, and the impact that this traffic will have on the adjacent streets and nearby intersections. In preparing the TIAS for the proposed site, the following intersections have been analyzed and evaluated:

- Epping Road (NH Route 27) at Continental Drive
- Epping Road (NH Route 27) at Brentwood Road (NH Route 111A) and Columbus Avenue
- Epping Road (NH Route 27) at Existing/Proposed Site Driveway
- Continental Drive at Proposed Site Driveway

Epping Road (NH Route 27)

Epping Road (NH Route 27) is classified as minor arterial and is under the jurisdiction of the Town of Exeter. NH Route 27 is an east-west highway, but in the vicinity of the project site runs in a north-south direction with one travel lane in each direction. Directional travel is separated by a double-yellow center line. The speed limit adjacent to the site is posted at 30 miles per hour (mph). Paved shoulders of various widths are provided along both sides of Epping Road (NH Route 27).

Continental Drive

Continental Drive is local road under the jurisdiction of the Town of Exeter. Continental Drive runs in an east-west direction with one travel lane in each direction. No pavement markings are provided on the roadway. The speed limit is not posted, but has been assumed to be 30 mph .

Epping Road (NH Route 27) at Continental Drive

Continental Drive intersects Epping Road (NH Route 27) from the west to form a T-type signalized intersection. The Continental Drive eastbound approach consists of a left-turn lane and a right-turn lane with storage of approximately 125 feet, the Epping Road northbound approach consists of an exclusive leftturn lane with storage of approximately 250 feet and a through lane, and the southbound approach consists of a through lane and an exclusive right-turn lane with a storage of approximately 225 feet. No sidewalks or pedestrian accommodations are provided at the intersection.

The intersection of Epping Road (NH Route 27) and Continental Drive was recently placed under traffic signal control with a GRIDSMART system. The signal operates with a northbound lead-left with an eastbound right-turn overlap, followed by the northbound through and southbound through/right-turn, ending with the eastbound approach with a southbound right-turn overlap.

Epping Road (NH Route 27) at Brentwood Road (NH Route 111A) and Columbus Avenue

Brentwood Road (NH Route 111A) intersects Epping Road (NH Route 27) from the east and Columbus Avenue intersects Brentwood Road and Epping Road from the south to form three minor intersections. The Epping Road northbound left turn and through movements and the Epping Road southbound through movement operate freely, with all other movements under STOP control. The three minor intersections formed consist of one to the northwest (Epping Road at Columbus Avenue), one to the northeast (Epping Road at Brentwood Road), and one to the south (Brentwood Road at Columbus Avenue).

Traffic Volumes

Base traffic conditions within the study area were developed by obtaining the traffic-volume networks from the Epping Road (NH Route 27) Corridor Study ${ }^{1}$ prepared by Vanasse Hangen Brustlin, Inc. (VHB) in December 2020. The Corridor Study base conditions were established from new counts conducted in March 2020 as well as other historical data sources in order to account for the change in traffic patterns as a result of the COVID-19 pandemic. The detailed breakdown of data sources can be found in the Corridor Study. The Epping Road (NH Route 27) weekday corridor peak hours were established as 7:15-8:15 AM and 4:00-5:00 PM. It should be noted that the Jaguar Exeter auto dealership was still open at the time of the March 2020 counts, but has since closed. The traffic volume networks from the Epping Road Corridor Study are provided in the Appendix.

Table 1 summarizes the existing peak-hour traffic volumes on Epping Road (NH Route 27) and Continental Drive. The 2021 Existing traffic-flow networks for the weekday AM and weekday PM peak hours are shown graphically on Figures 2 and 3, respectively. The 2020 Base Peak Hour Volumes from the Corridor Study were assumed for the 2021 Existing Traffic-Volumes, as typical background traffic growth is not expected between the years 2020 and 2021 as a result of the COVID-19 pandemic.

TABLE 1

Existing Peak Hour Traffic Volume Summary

Location/Time Period	Peak Hour Volume (vph)	Directional $_{\text {(istribution }}{ }^{\mathbf{b}}$
Epping Road, north of Continental Dr:		
Weekday Daily		
Weekday AM Peak Hour	1,320	56% SB
Weekday PM Peak Hour	1,565	59% NB
Continental Drive, west of Epping Rd:		
Weekday Daily		
Weekday AM Peak Hour	180	83% WB
Weekday PM Peak Hour	230	80% EB

[^0][^1]

FIGURE 2

FIGURE 3

202I EXISTING WEEKDAY PM

 PEAK HOUR TRAFFIC VOLUMES
Collisions

As part of the Corridor Study, collision data for the study area intersections were obtained from the Town of Exeter for the latest complete six years available (2014 to 2019).

The intersection of Epping Road (NH Route 27) at Continental Drive experienced seven collisions over the 6 -year study period, averaging 1.2 crashes per year. This intersection was recently put under traffic signal control with a GRIDSMART system. Accordingly, the crash data summarized from 2014 to 2019 took place while the intersection was unsignalized. Due to the recent signalization at the intersection, the 2020 crash data was requested from the Town. In 2020 only one crash with a deer was reported at this location, resulting in no injuries.

The intersection of Epping Road (NH Route 27) at Brentwood Road and Columbus Avenue experienced 24 collisions over the 6 -year study period, averaging four crashes per year. It should be noted that 79 percent of the crashes involved angle-type collisions, which is likely a result of the three roadways intersecting to make three minor intersections. As part of the Transportation Alternatives Program (TAP) grant, the intersections will be realigned. Epping Road and Brentwood Road will operate as a T-type intersection and Columbus Avenue will intersect Brentwood Road with a median island on Brentwood Road restricting left turns into or out of Columbus Avenue. The new alignment reduces the number of conflict points which in turn should reduce the number of future crashes. Additionally, pedestrian safety will be improved with the addition of a crosswalk across Brentwood Road with a pedestrian refuge. Crosswalks will remain across Epping Road and Columbus Avenue. Based on supplemental research, there were three crashes that occurred in 2020, none resulting in injury.

Vehicle Speeds

Vehicle speed measurements were conducted along Epping Road (NH Route 27) and Continental Drive by use of radar. The Epping Road speeds were obtained from the Corridor Study and the Continental Drive speeds were obtained in April 2021. All speed data is provided in the Appendix. The primary use of this information is explained in the Sight Distance section where the speeds are correlated to sight distance measurements taken at the location of the site driveways to assure that adequate sight distances exist at the driveways to provide safe operation. The results of the speed measurements are summarized in Table 3.

TABLE 3

Observed Travel Speeds

Location/Direction	Posted Speed Limit $^{\text {a }}$	Average Speed $^{\mathbf{b}}$	$\mathbf{8 5}^{\text {th }}$ Percentile Speed $^{\mathbf{c}}$
Epping Road, north of Continental Dr: Southbound Northbound	30	36	
Continental Drive, west of Epping Rd:	30	37	40
Westbound			
Eastbound	$30^{\text {d }}$	30	42

${ }^{\text {a }}$ In miles per hour (mph).
${ }^{\mathrm{b}}$ Average speed of all observed vehicles.
${ }^{\text {c }}$ Speed at, or below which 85 percent of all observed vehicles travel.
${ }^{\text {d }}$ Speed not posted, assumed to be 30 mph .

As shown in Table 3, the average speeds along Epping Road (NH Route 27) were found to be between 36 and 37 mph with the $85^{\text {th }}$ percentile speeds to be between 40 and 42 mph . The average speeds along Continental Drive were found to be between 30 and 33 mph with the $85^{\text {th }}$ percentile speeds to be between 34 and 36 mph . The observed speeds were found to be consistently higher than the posted speed limit on Epping Road, and slightly higher than the assumed 30 mph speed limit on Continental Drive.

FUTURE CONDITIONS

To estimate the impact of site-generated traffic within the study area, the projected 2030 Mid-Term Build traffic volumes were utilized from the Epping Road (NH Route 27) Corridor Study. The proposed redevelopment is expected to be completed and fully operational well within this time frame. Traffic volumes on the roadway network at that time include existing traffic and new traffic due to normal traffic growth. These 2030 Mid-Term Build traffic volumes were used to represent the 2030 No-Build traffic volumes for the proposed project, which assume that the proposed redevelopment is not built. The incremental impacts of the proposed project may then be determined by adding site-generated traffic volumes (Build conditions) and making comparisons to the No-Build conditions.

Traffic Growth

Two components of traffic growth were considered in the development of the 2030 Mid-Term Build traffic volumes from the Corridor Study. First, an annual growth percentage was determined. Based on NHDOT historical traffic volumes along Epping Road (NH Route 27) and Brentwood Road (NH Route 111A), as well as coordination efforts with the Rockingham Planning Commission officials, a 0.5 percent compounded annual growth was assumed.

Second, any planned or approved specific developments in the area that would generate a significant volume of traffic on study area roadways were considered. The following projects were included:

- Ray Farm Exeter -A 55+ active adult residential community with 116 total units located at 183 Epping Road was in construction at the time of the counts. The anticipated traffic for the remaining units were added to the traffic volume networks.
- Gateway at Exeter - The Gateway at Exeter development is proposed on the west side of Epping Road (NH Route 27), south of the NH Route 101 interchange. This mixed-use development includes 11,225 SF of retail space, 17,295 SF of office space, a 20,040 SF daycare facility, and 224 residential dwelling units. The anticipated traffic associated with this project was added to the traffic volume networks.
- Unitil Corporation - This 60,000 SF Unitil facility was under construction at 27 Gourmet Place at the time of the counts, and therefore the anticipated traffic associated this project was added to the traffic volume networks.
- Primrose Daycare School - A 13,000 SF Daycare School was being considered to replace the previously approved mixed-use development at the end of McKay Drive. Traffic was generated for the daycare using ITE and was added to the traffic volume networks.

It should be noted that a 5 -lot subdivision was considered (3 lots off Spruce Street and 2 lots off Brentwood Road (NH Route 111A), but due to the small amount of traffic to be generated by this project, it was considered to be included in the annual growth rate. The known developments networks from the Corridor Study are included in the Traffic-Count Data section of the Appendix.

Planned Roadway Improvements

Based on the NHDOT Project Information Center, Project \#41372 is in the design phase. Work includes the construction of sidewalks on Epping Road, Brentwood Road, Winter Street and Spring Street.

The improvements at the intersection of Epping Road (NH Route 27) at Brentwood Road (NH Route 111A) and Columbus Avenue as part of the TAP grant, previously discussed in the Collisions section, are included in the 2030 No-Build conditions of the analysis for the proposed project.

Finally, based on the Corridor Study, the 2030 Mid-Term improvements include a two-way left-turn lane (TWLTL) along Epping Road (NH Route 27) corridor, from north of Cronin Road to south of Brookside Drive. Accordingly, these improvements were included in the 2030 No-Build conditions of the analysis for the proposed project as well. The Conceptual Plans for these Mid-Term improvements are provided in the Appendix. Full Build-Out improvements including widening along the corridor, median barriers, new traffic signals, and roundabouts were provided in the Corridor Study as well, but were based on the development of the vacant parcels along the corridor. Due to the project costs and property impacts required to support this future development along the corridor, the Full Build-Out Improvements were not a viable option for the Town of Exeter, and therefore, the Mid-Term scenario improvements were used to represent the 2030 NoBuild conditions.

No-Build Conditions

The 2030 Mid-Term Build traffic volumes were utilized from the Epping Road (NH Route 27) Corridor Study to represent the 2030 No-Build traffic volumes, which were developed by applying a 0.5 percent compounded annual traffic growth rate (5.1 percent over ten years) to the 2020 Base traffic volumes from the Corridor Study. The 2030 No-Build traffic volumes are shown graphically on Figures 4 and 5 for the weekday AM, weekday PM and Saturday midday peak hours, respectively.

Site Access

Access and egress to the development are proposed via two (2) full access/egress driveways; one on Epping Road (NH Route 27) and one on Continental Drive. The existing driveway on Epping Road (NH Route 27) is a wide-open curb-cut that is shared with the property to the south, Al's Automotive \& Truck Service Center. As part of the redevelopment, this driveway will continue to be shared; however, it will be better defined providing only a 44 -foot wide curb-cut consisting of one entering lane and two exiting lanes for left and right turns. This is an improvement over the existing condition as it minimizes the conflict points along Epping Road (NH Route 27).

A new full access/egress driveway is proposed on Continental Drive. It is proposed to be located approximately 115 feet west of the stop bar on Continental Drive, at the end of the left and right turn lanes. The driveway is located in such a way to provide optimal on-site circulation while also providing an area for vehicles to queue up as they wait for a gap in traffic to exit onto Continental Drive. In addition, the location helps optimize the queue storage lanes for the drive-through and car wash.

FIGURE 4 2030 NO-BUILD WEEKDAY AM

FIGURE 5

Sight Distance

To identify potential safety concerns associated with site access and egress, sight distances have been evaluated at the proposed site driveway locations to determine if the available sight distances for vehicles exiting the site meet or exceed the minimum distances required for approaching vehicles to safely stop. The available sight distances were compared with minimum requirements, as established by the American Association of State Highway and Transportation Officials (AASHTO) ${ }^{2}$. AASHTO is the national standard by which vehicle sight distance is calculated, measured, and reported.

Sight distance is the length of roadway ahead that is visible to the driver. Stopping Sight Distance (SSD) is the minimum distance required for a vehicle traveling at a certain speed to safely stop before reaching a stationary object in its path. The values are based on a driver perception and reaction time of 2.5 seconds and a braking distance calculated for wet, level pavements. When the roadway is either on an upgrade or downgrade, grade correction factors are applied. Stopping sight distance is measured from an eye height of 3.5 feet to an object height of 2 feet above street level, equivalent to the taillight height of a passenger car. The SSD is measured along the centerline of the traveled way of the major road.

Intersection sight distance (ISD) is provided on minor street approaches to allow the drivers of stopped vehicles a sufficient view of the major roadway to decide when to enter the major roadway. By definition, ISD is the minimum distance required for a motorist exiting a minor street to turn onto the major street, without being overtaken by an approaching vehicle reducing its speed from the design speed to 70 percent of the design speed. ISD is measured from an eye height of 3.5 feet to an object height of 3.5 feet above street level. The use of an object height equal to the driver eye height makes intersection sight distances reciprocal (i.e., if one driver can see another vehicle, then the driver of that vehicle can also see the first vehicle). When the minor street is on an upgrade that exceeds 3 percent, grade correction factors are applied.

SSD is generally more important as it represents the minimum distance required for safe stopping while ISD is based only upon acceptable speed reductions to the approaching traffic stream. The ISD, however, must be equal to or greater than the minimum required SSD in order to provide safe operations at the intersection. In accordance with the AASHTO manual, "If the available sight distance for an entering or crossing vehicle is at least equal to the appropriate stopping sight distance for the major road, then drivers have sufficient sight distance to anticipate and avoid collisions. However, in some cases, this may require a major-road vehicle to stop or slow to accommodate the maneuver by a minor-road vehicle. To enhance traffic operations, intersection sight distances that exceed stopping sight distances are desirable along the major road." Accordingly, ISD should be at least equal to the distance required to allow a driver approaching the minor road to safely stop.

The available SSD and ISD at the proposed site driveway locations were measured and compared to minimum requirements as established by AASHTO. Based on both the posted speed limit and observed speeds, the SSD and ISD requirements at this intersection were calculated. The required minimum sight distances for the driveways are compared to the available distances, as shown in Table 4.

[^2]TABLE 4
Sight Distance Summary

Location/Direction	Stopping Sight Distance (feet)		Intersection Sight Distance (feet)		
	Measured	Minimum Required ${ }^{\mathrm{a}}$	Measured	Minimum Required ${ }^{\text {b }}$	Desirable ${ }^{\text {c }}$
Epping Road at Site Driveway: North of intersection (SB) South of intersection (NB)	$\begin{aligned} & 500+ \\ & 500+ \end{aligned}$	$\begin{aligned} & 305 \\ & 325 \end{aligned}$	$\begin{aligned} & 500+ \\ & 500+ \end{aligned}$	$\begin{aligned} & 305 \\ & 325 \end{aligned}$	$\begin{aligned} & 290 \\ & 355 \end{aligned}$
Continental Dr at Site Driveway: East of intersection (WB) West of intersection (EB)	$\begin{gathered} 125^{d} \\ 450 \end{gathered}$	$\begin{aligned} & 230 \\ & 265 \end{aligned}$	$\begin{gathered} 125^{d} \\ 365 \end{gathered}$	$\begin{aligned} & 230 \\ & 265 \end{aligned}$	$\begin{aligned} & 355 \\ & 290 \end{aligned}$

${ }^{\text {a }}$ Values based on AASHTO requirements for minimum SSD based on $85^{\text {th }}$ percentile speeds; $40 \mathrm{mph}(\mathrm{SB})$ and $42 \mathrm{mph}(\mathrm{NB})$ on Epping Road and $34 \mathrm{mph}(\mathrm{WB})$ and 36 mph (EB) on Continental Drive.
${ }^{\mathrm{b}}$ Values based on AASHTO requirements for SSD.
${ }^{\text {c }}$ Values based on AASHTO requirements for ISD for posted speed of 30 mph on Epping Road and 30 on Continental Drive.
${ }^{\mathrm{d}}$ Measurement to end of roadway.

As indicated in Table 4, available sight distances at the proposed site driveways exceed the minimum and desirable SSD and ISD requirements for safe operation with exception to the site driveway on Continental Drive, east of the intersection, which is limited to 125 feet due to the adjacent T-intersection with Epping Road (NH Route 27). Based on AASHTO requirements, 125 feet is safe for speeds up to 22 mph . Due to the proximity of the intersection, it is not likely that vehicles in the westbound direction will be traveling greater than 22 mph on Continental Drive in between Epping Road and the site driveway as they are entering onto Continental Drive from a turning movement. Left-turn speeds are generally 15 mph and rightturn speeds are generally 9 mph . The speeds measurements collected along Continental Drive were captured further west closer to Jillian Lane.

To ensure the safe and efficient flow of traffic to and from the site, it is recommended that any proposed plantings, vegetation, landscaping, and signing along the site frontage be kept low to the ground (no more than 3.0 feet above street level) or set back sufficiently from the edge of Epping Road and Continental Drive so as not to inhibit the available sight lines.

Trip Generation

The site is currently occupied by a $\pm 12,190$ SF vacant Jaguar auto dealership. The project consists of constructing a retail motor fuel outlet with a $\pm 5,500$ SF convenience store, a gasoline station with six (6) MPDs having twelve (12) VFPS, and a $\pm 4,182$ SF automated car wash having one (1) tunnel.

Traffic generated by the existing site was estimated using the trip rates contained in the ITE Trip Generation, $10^{\text {th }}$ Edition ${ }^{3}$ for Land Use Code (LUC) 840 (Automobile Sales [New]). Traffic to be generated by the proposed development was forecast using trip rates for LUC 960 (Super Convenience Market/Gas Station) and LUC 948 (Automated Car Wash). All trip-generation data are provided in the Appendix.

[^3]Studies have shown that for developments of mixed-use or multi-use sites, it is realistic to assume that there will be some multi-use trips within the site itself. For example, someone fueling their vehicle may also get a car wash. Therefore, a reduction in the overall trips experienced at the site driveways can be anticipated as a result of multi-use trips that include stops at more than one use on the site. Based on information published in the ITE Trip Generation Handbook ${ }^{4}$, Procedure for Estimating Multi-Use Trip Generation, it is estimated that multi-use trips account for 6 percent of weekday AM peak hour and 7 percent of weekday PM peak hour trips generated by the site. The Multi-Use Development Trip Generation and Internal Capture Worksheets are provided in the Appendix.

Not all of the vehicle trips expected to be generated by the proposed development represent new trips on the study area roadway system. Studies have shown that for developments such as the one proposed, a substantial portion of the site-generated vehicle trips are already present in the adjacent passing stream of traffic. Based on information published in the ITE Trip Generation Handbook, the average pass-by trip percentage is 62 percent during the weekday AM peak hour and 56 percent during the weekday PM peak hour for Gasoline/Service Station with Convenience Market. The lower of the two pass-by trip percentages (56 percent) was applied to the weekday daily volumes. The pass-by data are provided in the Appendix.

As shown in Table 5, the proposed redevelopment is expected to generate 118 additional vehicles trips (54 entering and 64 exiting) during the weekday AM peak hour and 94 additional vehicles trips (51 entering and 43 exiting) during the weekday PM peak hour beyond the study area.

At the site driveways, the proposed redevelopment is expected to generate 350 additional vehicles trips (170 entering and 180 exiting) during the weekday AM peak hour and 268 additional vehicles trips (138 entering and 130 exiting) during the weekday PM peak hour.

TABLE 5
Peak Hour Trip Generation Summary

Time Period/Direction	Existing Trips ${ }^{\text {a }}$	Proposed Trips			Additional Trips	
		Total ${ }^{\text {b }}$	Pass-By ${ }^{\text {c }}$	New ${ }^{\text {d }}$	Total ${ }^{\text {e }}$	New ${ }^{\text {f }}$
Weekday AM Peak Hour: Enter Exit Total	$\begin{array}{r} 17 \\ \frac{6}{23} \end{array}$	$\begin{array}{r} 187 \\ 186 \\ \hline 373 \end{array}$	$\begin{array}{r} 116 \\ 116 \\ \hline 232 \end{array}$	$\begin{array}{r} 71 \\ 70 \\ \hline 141 \end{array}$	$\begin{array}{r} 170 \\ 180 \\ \hline 350 \end{array}$	$\begin{array}{r} 54 \\ 64 \\ \hline 118 \end{array}$
Weekday PM Peak Hour: Enter Exit Total	$\begin{array}{r}18 \\ 26 \\ \hline 44\end{array}$	$\begin{array}{r}156 \\ 156 \\ \hline 312\end{array}$	$\begin{array}{r}87 \\ 87 \\ \hline 174\end{array}$	$\begin{array}{r} 69 \\ 69 \\ \hline 138 \end{array}$	$\begin{array}{r}138 \\ 130 \\ \hline 268\end{array}$	$\begin{array}{r}51 \\ 43 \\ \hline 94\end{array}$

${ }^{\text {a }}$ ITE LUC 840 (Automobile Sales [New]) for 12,187 SF.
${ }^{\text {b }}$ External Trips based on ITE LUC 960 (Super Convenience Market/Gas Station) for 12 VFPs and LUC 948 (Automated Car Wash) for 4,182 SF.
${ }^{\text {c }} 62$ percent of Total Trips during the Weekday AM peak hour and 56 percent during the Weekday PM peak hour.
${ }^{\text {d }}$ Proposed Total Trips minus Proposed Pass-By Trips.
${ }^{e}$ Proposed Total Trips minus Existing Trips, which represents the Additional Trips to the site driveways.
${ }^{\dagger}$ Proposed New Trips minus Existing Trips, which represents the Additional Trips beyond the study area.

[^4]
Trip Distribution

Having estimated project-generated vehicle trips, the next step is to determine the distribution of project traffic and assign these trips to the local roadway network. The directional distribution of site traffic is dependent on expected travel route to and from the site and existing travel patterns. Accordingly, 55 percent of the site traffic is expected to/from the north along Epping Road (NH Route 27), 30 percent is expected to/from the south along Epping Road (NH Route 27/NH Route 111A), and 15 percent is expected to/from the west along Brentwood Road (NH Route 111A).

Build Traffic Volumes

Based on the traffic generation and distribution estimates for this project, the traffic volumes associated with the proposed redevelopment were assigned to the roadway network. The site-generated traffic networks are shown on Figures 6 and 7 for the weekday AM and weekday PM peak hours, respectively. The sitegenerated traffic volumes were then combined with the 2030 No-Build traffic volumes to develop the 2030 Build peak-hour traffic-volume networks. The 2030 Build weekday AM and weekday PM peak hour traffic volumes are illustrated on Figures 8 and 9 , respectively.

FIGURE 6

FIGURE 7
SITE GENERATED WEEKDAY PM

FIGURE 8
2030 BUILD WEEKDAY AM

FIGURE 9
2030 BUILD WEEKDAY PM

Traffic Increases

The proposed redevelopment will result in increases in traffic on the study area roadways. As shown on Figures 6 through 7, traffic-volume increases beyond the study area during the peak hours are expected to be in the range of 13 to 66 vehicles. These increases represent, on average, one additional vehicle approximately every 1 minute to 4.5 minutes during the peak hours.

CAPACITY AND QUEUE ANALYSIS

Capacity and queue analyses were conducted at all study area locations under 2021 Existing, 2030 NoBuild, and 2030 Build traffic-volume conditions. The impact of site-generated traffic can be measured by comparing 2030 No-Build conditions to 2030 Build conditions.

Methodology

The capacity analysis methodology is based on the concepts and procedures in the Highway Capacity Manual (HCM) ${ }^{5}$ and is described in the Appendix.

For signalized intersections, the maximum back of queue during a typical (average) signal cycle and a $95^{\text {th }}$ percentile signal cycle were calculated for each lane group during the peak periods studied. The back of queue is the length of a backup of vehicles from the stop line of a signalized intersection to the last vehicle in the queue that is required to stop, regardless of the signal indication. The length of this queue depends on a number of factors including signal timing, vehicle arrival patterns, and the saturation flow rate. For unsignalized intersections, the $95^{\text {th }}$ percentile queue represents the length of queue of the critical minorstreet movement that is not expected to be exceeded 95 percent of the time during the analysis period (typically one hour). In this case, the queue length is a function of the capacity of the movement and the movement's degree of saturation.

Analysis Results

The results of the level-of-service (LOS) and queue analyses are shown in Table 6 and are discussed below. Capacity and queue analyses were conducted at the study area intersections utilizing Synchro software. ${ }^{6}$ The capacity and queue analysis worksheets for all conditions are provided in the Appendix.

Epping Road (NH Route 27) at Continental Drive

As shown in Table 6, under existing and future traffic-volume conditions, the signalized intersection of Epping Road (NH Route 27) at Continental Drive is expected to operate at an overall LOS A/B with all movements at LOS C or better during the weekday peak hours. There are no drops in level of service as a result of the proposed redevelopment project. Increases in delay as a result of the redevelopment are less than 3 seconds on the overall intersection, and less than 5 seconds on any particular movement. The volume-to-capacity (v/c) ratios are below 1.00 indicating there will be adequate capacity to accommodate the anticipated traffic volumes.

[^5]
Epping Road (NH Route 27) at Brentwood Road (NH Route 111A) at Columbus Avenue

Under existing traffic-volume conditions, the Columbus Avenue left-turn movement onto Epping Road operates at LOS D with all other movements at this Epping Road/Brentwood Road/Columbus Avenue location at LOS A/B during the weekday peak hours. With the geometric improvements at this location, the Brentwood Road eastbound left-turn onto Epping Road is expected to operate at LOS D with all other movements at LOS A/B under future traffic-volume conditions. With the proposed redevelopment in place, increases in delay on any movement are expected to be less than 4 seconds with a negligible increase in queue lengths. The v / c ratios are anticipated to be well below 1.00 indicating there will be adequate capacity to accommodate the anticipated traffic volumes.

Epping Road (NH Route 27) at Site Driveway

Under future traffic-volume conditions, the site driveway on Epping Road (NH Route 27) is anticipated to operate with left-turn movements out of the site at LOS D and right-turn movements at LOS C during the weekday peak hours. All queues on site are anticipated to be one vehicle or less with v/c ratios well below 1.00 indicating adequate capacity. The Epping Road northbound left-turn movement into the site is anticipated to be LOS B with queue lengths of one vehicle or less.

Continental Drive at Site Driveway

Under future traffic-volume conditions, the site driveway on Continental Drive is expected to operate with all movements at LOS A/B during the weekday peak hours. Queue lengths are anticipated to be one vehicle or less and v / c ratios are anticipated to be well below 1.00 indicating there will be adequate capacity to accommodate the anticipated traffic volumes. It should be noted that all average queues from the traffic signal are not expected to block the site driveway. Under 2030 Build conditions during the weekday PM peak hour, however, when the uses on Continental Drive are leaving for the day, the $95^{\text {th }}$ percentile queue for the eastbound left-turn lane at the traffic signal is expected the block the Continental Drive site driveway. This is expected to occur approximately two times during the weekday PM peak hour. During these times, queues on the driveway may become longer until the traffic light for the eastbound approach turns green, but there is adequate room on site without disrupting flow into and out of the driveway.

TABLE 6

Intersection Capacity Analysis Summary

Intersection/Peak Hour/Lane Group	2021 Existing				2030 No-Build				2030 Build			
	V/C ${ }^{\text {a }}$	Del. ${ }^{\text {b }}$	LOS ${ }^{\text {c }}$	Queue ${ }^{\text {d }}$	V/C	Del.	LOS	Queue	V/C	Del.	LOS	Queue
Epping Road (NH Route 27) at Continental Drive												
Weekday AM:												
Continental Drive EB left turn	0.09	18.7	B	5/26	0.13	24.2	C	10/33	0.39	27.0	C	46/97
Continental Drive EB right turn	0.04	13.7	B	0/14	0.05	18.0	B	0/14	0.04	18.8	B	0/14
Epping Road NB left turn	0.22	18.4	B	14/55	0.28	24.0	C	27/66	0.31	27.7	C	29/66
Epping Road NB through	0.46	2.9	A	77/115	0.54	3.1	A	112/172	0.54	4.0	A	112/167
Epping Road SB through	0.73	9.8	A	198/325	0.81	11.6	B	295/507	0.84	14.9	B	323/548
Epping Road SB right turn	0.12	3.8	A	0/10	0.13	3.5	A	0/11	0.14	3.2	A	0/12
Overall Intersection	--	6.9	A	--/--	--	8.1	A	--/-	--	10.8	B	--/--
Weekday PM:												
Continental Drive EB left turn	0.39	17.4	B	49/121	0.56	24.2	C	77/156	0.69	28.5	C	116/255
Continental Drive EB right turn	0.15	13.4	B	0/26	0.21	18.4	B	0/31	0.20	19.0	B	0/31
Epping Road NB left turn	0.12	21.1	C	6/26	0.14	26.4	C	8/29	0.15	28.8	C	8/29
Epping Road NB through	0.74	6.9	A	166/315	0.83	7.8	A	285/453	0.81	8.5	A	262/410
Epping Road SB through	0.74	11.3	B	201/339	0.80	11.8	B	322/482	0.82	13.7	B	336/506
Epping Road SB right turn	0.03	2.6	A	0/5	0.03	2.2	A	0/5	0.04	2.1	A	0/5
Overall Intersection	--	9.6	A	----	--	11.0	B	----	--	12.9	B	----

${ }^{\text {a }}$ Volume-to-capacity ratio.
${ }^{\mathrm{b}}$ Average control delay in seconds per vehicle.
${ }^{\text {c }}$ Level of service.
${ }^{\mathrm{d}}$ Average $/ 95^{\text {th }}$ percentile queue length in feet per lane (assuming 25 feet per vehicle).

TABLE 6 (continued)

Intersection Capacity Analysis Summary

Intersection/Peak Hour/Lane Group	2021 Existing				2030 No-Build				2030 Build			
	V/C ${ }^{\text {a }}$	Del. ${ }^{\text {b }}$	LOS $^{\text {c }}$	Queue ${ }^{\text {d }}$	V/C	Del.	LOS	Queue	V/C	Del.	LOS	Queue
Epping Road (NH Route 27) at Columbus Avenue												
Weekday AM:												
Columbus Avenue NE approach	0.67	32.0	D	--/118	--	--	--	----	--	--	--	--/--
Epping Road NB left turn	0.00	0.0	A	--/<25	--	--	--	----	--	--	--	----
Weekday PM:												
Columbus Avenue NE approach	0.52	28.1	D	--/70	--	--	--	----	--	--	--	--/--
Epping Road NB left turn	0.00	0.0	A	--/<25	--	--	--	----	--	--	--	--/--
Epping Road (NH Route 27) at Brentwood Road (NH Route 111A)												
Weekday AM:												
Epping Road NB left turn	0.03	8.0	A	--/<25	0.04	8.4	A	--/<25	0.04	8.4	A	--/<25
Brentwood Road EB approach	0.10	10.4	B	--/<25	--	--	--	----	--	--	--	----
Brentwood Road EB left turn	--	--	--	--/-	0.60	29.0	D	--/95	0.65	32.5	D	--/108
Brentwood Road EB right turn	--	--	--	--/--	0.14	12.4	B	--/<25	0.14	12.7	B	--/<25
Weekday PM:												
Epping Road NB left turn	0.09	8.4	A	--/<25	0.12	9.2	A	--/<25	0.12	9.3	A	--/<25
Brentwood Road EB approach	0.10	11.1	B	--/<25	--	--	--	----	--	--	--	--/-
Brentwood Road EB left turn	--	--	--	--/-	0.43	29.0	D	--/50	0.47	31.4	D	--/58
Brentwood Road EB right turn	--	--	--	--/--	0.18	15.6	C	--/<25	0.18	15.9	C	--/<25
Brentwood Road (NH Route 111A) at Columbus Avenue												
Weekday AM:												
Columbus Avenue NB approach	0.10	8.4	A	--/<25	0.10	10.4	B	--/<25	0.11	10.4	B	--/<25
Brentwood Road EB approach	0.33	9.9	A	--/38	0.00	0.0	A	--<25	0.00	0.0	A	--/<25
Brentwood Road WB approach	0.06	8.1	A	--/<25	0.00	0.0	A	--<25	0.00	0.0	A	--/<25
Columbus Avenue SB approach	0.16	8.2	A	--/<25	--	--	--	----	--	--	--	----
Weekday PM:												
Columbus Avenue NB approach	0.11	8.6	A	--/<25	0.09	9.6	A	--/<25	0.09	9.6	A	--/<25
Brentwood Road EB approach	0.23	9.6	A	--/<25	0.00	0.0	A	--<<25	0.00	0.0	A	--<25
Brentwood Road WB approach	0.15	9.0	A	--/<25	0.00	0.0	A	--/<25	0.00	0.0	A	--/<25
Columbus Avenue SB approach	0.37	9.8	A	--/43	--	--	--	----	--	--	--	----

[^6][^7]
TABLE 6 (continued)

Intersection Capacity Analysis Summary

Intersection/Peak Hour/Lane Group	2021 Existing				2030 No-Build				2030 Build			
	V/C ${ }^{\text {a }}$	Del. ${ }^{\text {b }}$	LOS ${ }^{\text {c }}$	Queue ${ }^{\text {d }}$	V/C	Del.	LOS	Queue	V/C	Del.	LOS	Queue
Epping Road (NH Route 27) at Site Driveway												
Weekday AM:												
Epping Road NB left turn	0.01	9.1	A	--/<25	0.01	9.8	A	--/<25	0.12	10.4	B	--/<25
Site Driveway EB approach	0.03	21.6	C	--/<25	0.02	18.4	C	--/<25	--	--	--	--/--
Site Driveway EB left turn	--	--	--	--/-	--	--	--	----	0.13	26.9	D	--/<25
Site Driveway EB right turn	--	--	--	--/--	--	--	--	----	0.26	18.7	C	--/25
Weekday PM:												
Epping Road NB left turn	0.01	9.2	A	--/<25	0.01	9.9	A	--/<25	0.11	10.6	B	--/<25
Site Driveway EB approach	0.18	31.8	D	--/<25	0.12	22.5	C	--/<25	--	--	--	--/--
Site Driveway EB left turn	--	--	--	--/--	--	--	--	----	0.16	33.2	D	--/<25
Site Driveway EB right turn	--	--	--	--/--	--	--	--	----	0.22	18.7	C	--/<25
Continental Drive at Site Driveway												
Weekday AM:												
Site Driveway NB approach	--	--	--	--/--	--	--	--	----	0.09	9.1	A	--/<25
Continental Drive WB left turn	--	--	--	--/--	--	--	--	----	0.02	7.3	A	--/<25
Weekday PM:												
Site Driveway NB approach	--	--	--	--/--	--	--	--	----	0.10	10.0	B	--/<25
Continental Drive WB left turn	--	--	--	--/--	--	--	--	----	0.01	7.8	A	--/<25

[^8][^9]
CONCLUSIONS

Existing and future conditions in the study area have been described, analyzed, and evaluated with respect to traffic operations and the impact of the proposed redevelopment. Conclusions of this effort are presented below.

- The site located at 158 Epping Road (NH Route 27) is currently occupied by a $\pm 12,190$ SF vacant Jaguar auto dealership. The project consists of razing the existing buildings on the site and constructing a retail motor fuel outlet with a $\pm 5,500 \mathrm{SF}$ convenience store, a gasoline station with six (6) MPDs having twelve (12) VFPS, and a $\pm 4,182$ SF automated car wash having one (1) tunnel. Access and egress are proposed via two (2) full access/egress driveways; one on Epping Road (NH Route 27) and one on Continental Drive.
- Available sight distances at the proposed site driveways exceed the minimum and desirable SSD and ISD requirements for safe operation with exception to the site driveway on Continental Drive, east of the intersection, which is limited to 125 feet due to the adjacent T-intersection Epping Road (NH Route 27). Based on AASHTO requirements, 125 feet is safe for speeds up to 22 mph . Due to the proximity of the intersection, it is not likely that vehicles in the westbound direction will be traveling greater than 22 mph on Continental Drive in between Epping Road and the site driveway as they are entering onto Continental Drive from a turning movement. Left-turn speeds are generally 15 mph and right-turn speeds are generally 9 mph .
- The proposed redevelopment is expected to generate 118 additional vehicles trips (54 entering and 64 exiting) during the weekday AM peak hour and 94 additional vehicles trips (51 entering and 43 exiting) during the weekday PM peak hour beyond the study area. At the site driveways, the proposed redevelopment is expected to generate 350 additional vehicles trips (170 entering and 180 exiting) during the weekday AM peak hour and 268 additional vehicles trips (138 entering and 130 exiting) during the weekday PM peak hour. Traffic-volume increases beyond the study area during the peak hours are expected to be in the range of 13 to 66 vehicles. These increases represent, on average, one additional vehicle approximately every 1 minute to 4.5 minutes during the peak hours.
- Under existing and future traffic-volume conditions, the signalized intersection of Epping Road (NH Route 27) at Continental Drive is expected to operate at an overall LOS A/B with all movements at LOS C or better during the weekday peak hours. There are no drops in level of service as a result of the proposed redevelopment project. Increases in delay as a result of the redevelopment are less than 3 seconds on the overall intersection, and less than 5 seconds on any particular movement. The volume-to-capacity (v / c) ratios are below 1.00 indicating there will be adequate capacity to accommodate the anticipated traffic volumes.
- Under existing traffic-volume conditions, the Columbus Avenue left-turn movement onto Epping Road operates at LOS D with all other movements at this Epping Road/Brentwood Road/Columbus Avenue location at LOS A/B during the weekday peak hours. With the geometric improvements at this location, the Brentwood Road eastbound left-turn onto Epping Road is expected to operate at LOS D with all other movements at LOS A/B under future traffic-volume conditions. With the proposed redevelopment in place, increases in delay on any movement are expected to be less than 4 seconds with a negligible increase in queue lengths. The v / c ratios are anticipated to be well below 1.00 indicating there will be adequate capacity to accommodate the anticipated traffic volumes.
- Under future traffic-volume conditions, the site driveway on Epping Road (NH Route 27) is anticipated to operate with left-turn movements out of the site at LOS D and right-turn movements at LOS C during the weekday peak hours. All queues on site are anticipated to be one vehicle or less with v / c ratios well below 1.00 indicating adequate capacity. The Epping Road northbound leftturn movement into the site is anticipated to be LOS B with queue lengths of one vehicle or less.
- Under future traffic-volume conditions, the site driveway on Continental Drive is expected to operate with all movements at LOS A/B during the weekday peak hours. Queue lengths are anticipated to be one vehicle or less and v / c ratios are anticipated to be well below 1.00 indicating there will be adequate capacity to accommodate the anticipated traffic volumes.
- APPENDIX
- Traffic-Count Data
- Speed Data
- Mid-Term Improvements
- Trip Generation Calculations
- Capacity Analysis Methodology
- Capacity and Queue Analysis Worksheets

Location : North of Continental Drive
City/State: Exeter, NH
1857SPD1

Daily

15th Percentile :	30 MPH
50th Percentile :	35 MPH
85th Percentile :	40 MPH
95th Percentile :	43 MPH
Mean Speed(Average) :	36 MPH
10 MPH Pace Speed :	$31-40 \mathrm{MPH}$
Number in Pace :	2908
Percent in Pace :	73.2%
Number of Vehicles > 35 MPH :	2175
Percent of Vehicles > 35 MPH :	54.7%

Location : NH Route 27
Location : North of Continental Drive
City/State: Exeter, NH
1857SPD1
SB

Daily

15th Percentile :	31 MPH
50th Percentile :	36 MPH
85th Percentile :	42 MPH
95th Percentile :	44 MPH
Mean Speed(Average) :	37 MPH
10 MPH Pace Speed :	$31-40 \mathrm{MPH}$
Number in Pace :	3091
Percent in Pace :	69.9%
Number of Vehicles > 35 MPH :	2946
Percent of Vehicles $>35 \mathrm{MPH}:$	66.7%

Location : North of Continental Drive
City/State: Exeter, NH

Daily

15th Percentile :	31 MPH
50th Percentile :	36 MPH
85th Percentile :	41 MPH
95th Percentile :	44 MPH
Mean Speed(Average) :	37 MPH
10 MPH Pace Speed :	$31-40 \mathrm{MPH}$
Number in Pace :	3189
Percent in Pace :	69.8%
Number of Vehicles $>35 \mathrm{MPH}:$	2906
Percent of Vehicles $>35 \mathrm{MPH}:$	63.6%

Location:	Continental Drive, west of Epping Road	Date: $4 / 9 / 2021$
Project:	Retail Motor Fuel Outlet - Exeter, NH	
Weather:	Sunny -60's	Time: $12: 00$ PM

Eastbound	Westbound
Speed (mph)	Speed (mph)
33	27
31	26
35	24
34	33
34	30
32	36
29	36
32	28
38	30
34	30
41	34
35	28
37	27
31	29
29	32
34	35
35	37
36	33
31	26
35	34
29	32
36	25
29	28
31	27
30	30
30	
35	
28	34
33	30
36	34

		$\begin{gathered} \text { Existing } \\ \text { LUC } 840 \\ \text { Total } \end{gathered}$	$\begin{aligned} & \hline \text { Proposed } \\ & \hline \text { LUC } 960 \end{aligned}$		
Weekday Daily	In	160	1,383	774	609
	Out	160	1,383	774	609
	Total	320	2,766	1548	1,218
Weekday AM	In	17	187	116	71
	Out	$\underline{6}$	186	116	70
	Total	23	373	232	141
Weekday PM	In	18	156	87	69
	Out	$\underline{26}$	156	87	69
	Total	44	312	174	138
Saturday Daily	In	318	1,750	980	770
	Out	318	1,750	980	$\underline{770}$
	Total	636	3,500	1960	1,540
aturday Midday	In	4	178	99	79
	Out	$\underline{5}$	176	99	77
	Total	9	354	198	156
			Pass-By		
			Wkday Daily	56\%	
			AM	62\%	
			PM	56\%	
			Saturday	56\%	
			SAT	56\%	

No daily Car Wash trip estimates available.

Institute of Transportation Engineers (ITE)
 Land Use Code (LUC) 840 - Automobile Sales (New)
 General Urban/Suburban

ıverage Vehicle Trips Ends vs 1000 Sq. Feet Gross Floor Area Independent Variable (X):

```
Average Weekday Daily
    T = 28.65 (X) - 29.45
    T=28.65 * 12.187 - 29.45
    T = 319.71
    T=320 vehicle trips
        with 50% ( 160 vph) entering and 50% ( }160\textrm{vph})\mathrm{ ) exiting.
```

Weekday Morning Peak Hour Of Adjacent Street Traffic
$\mathrm{T}=1.87$ * (X)
$\mathrm{T}=1.87 \quad * \quad 12.187$
$\mathrm{T}=22.79$
$\mathrm{T}=23 \quad$ vehicle trips
with $73 \%\left(\begin{array}{lll} & 17 & \mathrm{vph}\end{array}\right)$ entering and 27\% (6 vph$)$ exiting.
Weekday Evening Peak Hour Of Adjacent Street Traffic
$\mathrm{T}=1.80(\mathrm{X})+21.60$
$\mathrm{T}=1.80 \quad * \quad 12.187+21.60$
$\mathrm{T}=43.54$
$\mathrm{T}=44 \quad$ vehicle trips
with 40% (18 vph) entering and 60% (26 vph) exiting.

SATURDAY DAILY

$\mathrm{T}=52.24$ * (X)
$\mathrm{T}=52.24 \quad * 12.187$
$\mathrm{T}=636.65$
$\mathrm{T}=636 \quad$ vehicle trips with 50% ($318 \quad \mathrm{vpd})$ entering and 50% (318 vpd) exiting.

Saturday Peak Hour Of Generator
$\mathrm{T}=8.56(\mathrm{X})-95.19$
$\mathrm{T}=8.56 \quad * \quad 12.187-95.19$
$\mathrm{T}=9.13$
$\mathrm{T}=9 \quad$ vehicle trips
with 50% ($4 \quad v p h$) entering and 50\% (5 vph) exiting.

Institute of Transportation Engineers (ITE)
 Land Use Code (LUC) 960 - Super Convenience Market/Gas Station
 General Urban/Suburban

Average Vehicle Trips Ends vs:
Vehicle Fueling Positions
Independent Variable (X): 12

```
AvERAGE WEEKDAY DAILY
    T = 230.52 * (X)
    T}=230.52 * 12
    T = 2766.24
    T=2,766 vehicle trips
        with 50% ( 1,383 vpd) entering and 50% ( 1,383 vpd) exiting.
```

Weekday Morning Peak Hour Of Adjacent Street Traffic
$\mathrm{T}=28.08$ * (X)
$\mathrm{T}=28.08 \quad * 12$
$\mathrm{T}=336.96$
$\mathrm{T}=337 \quad$ vehicle trips
with 50% (169 vph) entering and 50\% (168 vph) exiting.
Weekday Evening Peak Hour Of Adjacent Street Traffic
$\mathrm{T}=22.96$ * (X)
$\mathrm{T}=22.96 \quad * 12$
$\mathrm{T}=275.52$
$\mathrm{T}=276 \quad$ vehicle trips
with $50 \%(138 \mathrm{vph})$ entering and $50 \%(138 \mathrm{vph})$ exiting.
SATURDAY Daily
$\mathrm{T}=291.67$ * (X)
$\mathrm{T}=291.67 \quad * 12$
$\mathrm{T}=3500.04$
$\mathrm{T}=3,500 \quad$ vehicle trips
with 50% ($1,750 \mathrm{vpd}$) entering and 50% ($1,750 \mathrm{vpd})$ exiting.

Saturday Peak Hour Of Generator

$\mathrm{T}=23.26$ * (X)
$\mathrm{T}=23.26 \quad * 12$
$\mathrm{T}=279.12$
$\mathrm{T}=279 \quad$ vehicle trips with $50 \%(140 \mathrm{vph})$ entering and $50 \%(139 \mathrm{vph})$ exiting.

Institute of Transportation Engineers (ITE)

Land Use Code (LUC) 948 - Automated Car Wash

General Urban/Suburban
Average Vehicle Trips Ends vs: 1,000 Sq. Ft. Gross Floor Area Independent Variable (X): 4.182

```
Weekday Morning Peak Hour Of Adjacent Street Traffic
    T=14.20 * (X)
    T=14.20 * 4.182
    T=59.38
    T=60 vehicle trips
        with 50% ( 30 vpd) entering and 50% ( 30 vpd) exiting.
* No weekday morning peak hour data available, weekday evening trips were assumed.
```

Weekday Evening Peak Hour Of Adjacent Street Traffic
$\mathrm{T}=14.20$ * (X)
$\mathrm{T}=14.20 \quad * 4.182$
$\mathrm{T}=59.38$
$\mathrm{T}=60 \quad$ vehicle trips
with $50 \%(30 \quad v p d)$ entering and $50 \%(30 \quad v p d)$ exiting.

```
Saturday Peak Hour Of Generator
    T=30.40 * (X)
    T=30.40 * 4.182
    T=127.13
    T=127 vehicle trips
        with 50% ( 64 vph) entering and 50% ( 63 vph) exiting.
```


Table F. 36 Pass-By and Non-Pass-By Trips Weekday, PM Peak Period Land Use Code 944-Gasoline/Service Station

S\%E	vericue FUELNG POSITIONS	LOCATION	WEEkDAY SURVEY. DATE	12			NON-PASB-EY(TRIPS(\%)			AD. STREET PRAKHOUR Votume	
艮的				INHERVIEWS	TME PERIOD	TRIP (\%)	PRIMARY	DIVERTED	TOTAL		SOURCE
-	-	Chicago suburbs, IL	1987	48	3:00-7:00 p.m,	21	-	-	79	-	Kenig, O'Hara, Humes, Flock
-	-	Chicago suburbs, IL	1987	34	3:00-6:00 p.m.	25	-	-	75	-	Kenig, O'Hara, Humes, Flock
-	-	Chicago suburbs, IL	1987	42	3:00-6:00 p.m.	20	-	-	80	-	Kenig, O'Hara, Humes, Flock
2,3	6	Gaithersburg, MD	1992	55	4:00-6:00 p.m.	40	11	49	60	2,760	RBA
2.1	6	Belhesda, MD	1992	30	4:00-6:00 p.m.	53	20	27	47	1,060	RBA
1.7	6	Wheaton, MD	1992	18	4:00-6:00 p.m.	61	6	33	39	2,510	RBA
2.0	8	Gaithersburg, MD	1992	47	4:00-6:00 p.m.	62	23	15	38	2,635	RBA
1.2	6	Damascus, MD	1992	26	4:00-6:00 p.m.	58	11	31	42	1,020	RBA
0.3	12	Wheaton, MD	1992	52	4:00-6:00 p.m.	38	10	52	62	3,835	RBA

Average Pass-By Trip Percentage: 42
"-" means no data were provided

Table F. 37 Pass-By and Non-Pass-By Trips Weekday, AM Peak Period Land Use Code 945-Gasoline/Service Station with Convenience Market

$\begin{gathered} \text { sige } \\ 1.000 \text { so } \\ \text { FT, GFA) } \\ \hline \end{gathered}$	VEHCLE fueling Positions	LOCATION	WEEKDAY SURVEY DATE	NO OF INTERMEWS	TIME PERIOD	PASS-BY TRIP (\%)	NON.PASS.EY TRIPS (\%)			A0, SIREET PEAKHOUR volume	SOURICE
							PRIMARY	DIVERTED	TOTAL		
0.8	8	Louisville area, KY	1993	61	7:00-9:00 a.m.	60	15	25	40	4,000	BartonAschman Assoc.
0.6	8	Louisville, KY	1993	48	7:00-9:00 a.m.	68	13	19	32	1,307	BartonAschman Assoc.
0.7	10	Louisville, KY	1993	47	7:00-9:00 a.m.	67	11	22	33	1,105	BartonAschman Assoc.
0.7	8	Louisville area, KY	1993	-	7:00-9:00 a.m.	56	22	22	44	1,211	BartonAschman Assoc.
0.7	10	Louisville area, KY	1993	-	7:00-9:00 a.m.	46	42	12	54	1,211	BartonAschman Assoc.
0.3	-	Louisville area, KY	1993	75	7:00-9:00 a.m.	72	15	13	28	-	BartonAschman Assoc.
0.8	8	Silver Spring, MD	1992	36	7:00-9:00 a.m.	47	14	39	53	3,095	RBA
0.4	8	Derwood, MD	1992	46	7:00-9:00 a.m.	75	0	25	25	3,770	RBA
2.2	8	$\begin{array}{\|c} \hline \begin{array}{c} \text { Kensinglon, } \\ \text { MD } \end{array} \\ \hline \end{array}$	1992	31	7:00-9:00 a.m.	47	34	19	53	1,785	RBA
1	8	Silver Spring, MD	1992	35	7:00-9:00 a.m.	78	9	13	22	7,080	RBA

Average Pass-By Trip Percentage: 62
"-" means no data were provided

Figure F. 18 Gasoline/Service Station with Convenience Market (945)
Average Pass-ByTrip Percentage vs: 1,000 Sq. Ft. Gross Floor Area
On a: Weekday, AM Peak Period
Number of Studies: 10
Average 1,000 Sq. Ft. GFA: 0.8

Data Plot

Table F. 38 Pass-By and Non-Pass-By Trips Weekday, PM Peak Period Land Use Code 945-Gasoline/Service Station with Convenience Market

$\begin{aligned} & \text { SRE } \ 1,000 \\ & \text { SQ.FT } \\ & \text { (FFA) } \end{aligned}$	$\begin{aligned} & \text { VEricle } \\ & \text { FURANG } \\ & \text { POSTions } \end{aligned}$		wegionay SURVEY DATE			$\begin{aligned} & \text { Pross-8Y } \\ & \text { TBP (\%) } \end{aligned}$	HON.PMSS-BY TRIPS (\%)			ADJ STREET PEAK HOUT volume	
		Locanor		WTERYEWS	TIME PERIOD		PRIMARY	DIVERTED	TOTAL		SOURCE
0.8	8	Louisville area, KY	1993	83	4:00-6:00 p,m,	52	8	40	48	4,965	BartonAschman Assoc.
0.6	8	Louisville, KY	1993	60	4:00-6:00 p.m.	53	20	27	47	1,491	BartonAschman Assoc.
0.7	10	Louisville, KY	1993	-	4:00-6:00 p.m.	57	19	24	43	1,812	BartonAschman Assoc.
0.7	8	Louisville area, KY	1993	-	4:00-6:00 p.m.	72	7	21	28	2,657	BartonAschman Assoc.
0.7	10	Louisville area, KY	1993	-	4:00-6:00 p.m,	55	16	29	45	2,657	BartonAschman Assoc.
0.8	8	Silver Spring, MD	1992	36	4:00-6:00 pm.	67	14	19	33	3,095	RBA
0.4	8	Denwood, MD	1992	46	4:00-6:00 p.m.	46	11	43	54	3,770	RBA
2.1	8	Kensington, MD	1992	31	4:00-6:00 p.m.	52	13	35	48	1,785	RBA
1	8	Silver Spring, MD	1992	35	4:00-6:00 p.m.	54	3	43	46	7,080	RBA

Average Pass-By Trip Percentage: 56
"-" means no data were provided

Figure F. 19 Gasoline/Service Station with Convenience Market (945)
Average Pass-ByTrip Percentage vs: 1,000 Sq. Ft. Gross Floor Area
On a: Weekday, PM Peak Period
Number of Studies: 9
Average 1,000 Sq. Ft. GFA: 0.9
Data Plot

CAPACITY ANALYSIS METHODOLOGY

A primary result of capacity analysis is the assignment of levels of service to traffic facilities under various traffic flow conditions. The capacity analysis methodology is based on the concepts and procedures in the Highway Capacity Manual (HCM). ${ }^{7}$ The concept of level of service (LOS) is defined as a qualitative measure describing operational conditions within a traffic stream and their perception by motorists and/or passengers. A level-of-service definition provides an index to quality of traffic flow in terms of such factors as speed, travel time, freedom to maneuver, traffic interruptions, comfort, convenience, and safety.

Six levels of service are defined for each type of facility. They are given letter designations from A to F, with LOS A representing the best operating conditions and LOS F the worst. Since the level of service of a traffic facility is a function of the traffic flows placed upon it, such a facility may operate at a wide range of levels of service, depending on the time of day, day of week, or period of year. A description of the operating condition under each level of service is provided below:

- LOS A describes conditions with little to no delay to motorists.
- LOS B represents a desirable level with relatively low delay to motorists.
- LOS C describes conditions with average delays to motorists.
- LOS D describes operations where the influence of congestion becomes more noticeable. Delays are still within an acceptable range.
- LOS E represents operating conditions with high delay values. This level is considered by many agencies to be the limit of acceptable delay.
- LOS F is considered to be unacceptable to most drivers with high delay values that often occur, when arrival flow rates exceed the capacity of the intersection.

Unsignalized Intersections

Levels of service for unsignalized intersections are calculated using the operational analysis methodology of the HCM. The procedure accounts for lane configuration on both the minor and major street approaches, conflicting traffic stream volumes, and the type of intersection control (STOP, YIELD, or all-way STOP control). The definition of level of service for unsignalized intersections is a function of average control delay. Control delay includes initial deceleration delay, queue move-up time, stopped delay, and final acceleration delay. The level-of-service criteria for unsignalized intersections are shown in Table A-1.

Signalized Intersections

Levels of service for signalized intersections are also calculated using the operational analysis methodology of the HCM. The methodology for signalized intersections assesses the effects of signal type, timing, phasing, and progression; vehicle mix; and geometrics on average control delay. Control delay includes initial deceleration delay, queue move-up time, stopped delay, and final acceleration delay. Table A-1 summarizes the relationship between level of service and average control delay.

[^10]TABLE A-1
Level-of-Service Criteria for Intersections

	Unsignalized Intersection Criteria Average Control Delay (Seconds per Vehicle)	Signalized Intersection Criteria Average Control Delay (Seconds per Vehicle)
	≤ 10	≤ 10
A	>10 and ≤ 15	>10 and ≤ 20
B	>15 and ≤ 25	>20 and ≤ 35
C	>25 and ≤ 35	>35 and ≤ 55
D	>35 and ≤ 50	>55 and ≤ 80
E	>50 or v/c >1.0	>80 or v/c >1.0
F		

Source Highway Capacity Manual $6^{\text {th }}$ Edition, Transportation Research Board; Washington, D.C.; 2016. Pages 19-16, 20-6, and 21-9.

For signalized intersections, this delay criterion may be applied in assigning level-of-service designations to individual lane groups, to individual intersection approaches, or to the entire intersection. For unsignalized intersections, this delay criterion may be applied in assigning level-of-service designations to individual lane groups or to individual intersection approaches.

Lane Group	$\begin{aligned} & \Rightarrow \\ & \text { EBL } \end{aligned}$	EBR	NBL	4NBT	$\frac{1}{1}$SBT	SBR
Lane Configurations	${ }^{7}$	「	${ }^{7}$	4	4	「7
Traffic Volume (vph)	15	15	45	565	635	105
Future Volume (vph)	15	15	45	565	635	105
Turn Type	Prot	pt+ov	Prot	NA	NA	pt+ov
Protected Phases	4	45	5	2	6	46
Permitted Phases						
Detector Phase	4	45	5	2	6	46
Switch Phase						
Minimum Initial (s)	8.0		8.0	10.0	10.0	
Minimum Split (s)	14.0		14.0	16.0	16.0	
Total Split (s)	15.0		20.0	75.0	55.0	
Total Split (\%)	16.7\%		22.2\%	83.3\%	61.1\%	
Yellow Time (s)	4.0		4.0	4.0	4.0	
All-Red Time (s)	2.0		2.0	2.0	2.0	
Lost Time Adjust (s)	-2.0		-2.0	-2.0	-2.0	
Total Lost Time (s)	4.0		4.0	4.0	4.0	
Lead/Lag			Lead		Lag	
Lead-Lag Optimize?			Yes		Yes	
Recall Mode	None		None	Min	Min	
Act Effct Green (s)	11.3	22.3	11.7	45.5	38.3	49.8
Actuated g/C Ratio	0.19	0.38	0.20	0.77	0.65	0.84
v / c Ratio	0.05	0.03	0.14	0.43	0.57	0.08
Control Delay	29.9	9.5	28.7	4.4	12.3	0.7
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	29.9	9.5	28.7	4.4	12.3	0.7
LOS	C	A	C	A	B	A
Approach Delay	19.7			6.2	10.7	
Approach LOS	B			A	B	
Intersection Summary						

Cycle Length: 90
Actuated Cycle Length: 59.1
Natural Cycle: 60
Control Type: Actuated-Uncoordinated
Maximum v/c Ratio: 0.57
Intersection Signal Delay: 8.9
Intersection LOS: A
Intersection Capacity Utilization 50.7\%
ICU Level of Service A
Analysis Period (min) 15
Splits and Phases: 3: Epping Road (NH 27) \& Continental Drive

	y		4	4		\downarrow
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Group Flow (vph)	16	16	49	614	690	114
v / c Ratio	0.05	0.03	0.14	0.43	0.57	0.08
Control Delay	29.9	9.5	28.7	4.4	12.3	0.7
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	29.9	9.5	28.7	4.4	12.3	0.7
Queue Length 50th (ft)	5	0	17	77	198	0
Queue Length 95th (ft)	26	14	55	115	325	10
Internal Link Dist (ft)	2747			332	2112	
Turn Bay Length (t)		125	225			225
Base Capacity (vph)	373	716	543	1803	1537	1373
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.04	0.02	0.09	0.34	0.45	0.08
Intersection Summary						

	4		4	4	\downarrow	4
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	${ }^{7}$	「	${ }^{7}$	4	4	「'
Traffic Volume (veh/h)	15	15	45	565	635	105
Future Volume (veh/h)	15	15	45	565	635	105
Initial $Q(Q b)$, veh	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00	1.00	1.00			1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	No			No	No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	16	16	49	614	690	114
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, \%	2	2	2	2	2	2
Cap, veh/h	183	361	223	1349	950	968
Arrive On Green	0.10	0.10	0.13	0.72	0.51	0.51
Sat Flow, veh/h	1781	1585	1781	1870	1870	1585
Grp Volume(v), veh/h	16	16	49	614	690	114
Grp Sat Flow(s), veh/h/ln	1781	1585	1781	1870	1870	1585
Q Serve(g_s), s	0.4	0.4	1.1	6.2	13.1	1.4
Cycle Q Clear(g_c), s	0.4	0.4	1.1	6.2	13.1	1.4
Prop In Lane	1.00	1.00	1.00			1.00
Lane Grp Cap(c), veh/h	183	361	223	1349	950	968
V/C Ratio(X)	0.09	0.04	0.22	0.46	0.73	0.12
Avail Cap(c_a), veh/h	431	582	627	2923	2099	1942
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(l)	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	18.5	13.7	17.9	2.6	8.7	3.7
Incr Delay (d2), s/veh	0.2	0.0	0.5	0.2	1.1	0.1
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0
\%ile BackOfQ(50\%),veh/ln	0.1	0.0	0.4	0.7	3.9	0.4
Unsig. Movement Delay, s/veh						
LnGrp Delay(d),s/veh	18.7	13.7	18.4	2.9	9.8	3.8
LnGrp LOS	B	B	B	A	A	A
Approach Vol, veh/h	32			663	804	
Approach Delay, s/veh	16.2			4.0	8.9	
Approach LOS	B			A	A	
Timer - Assigned Phs		2		4	5	6
Phs Duration (G+Y+Rc), s		36.8		8.7	9.7	27.1
Change Period ($\mathrm{Y}+\mathrm{Rc}$), s		6.0		6.0	6.0	6.0
Max Green Setting (Gmax), s		69.0		9.0	14.0	49.0
Max Q Clear Time (g_c+11), s		8.2		2.4	3.1	15.1
Green Ext Time (p_c), s		4.9		0.0	0.1	6.0
Intersection Summary						
HCM 6th Ctrl Delay 6.9						
HCM 6th LOS						

Intersection						
Int Delay, s/veh	7.6					
Movement	NBL	NBT	SBT	SBR	NEL	NER
Lane Configurations		\uparrow	\uparrow		F	
Traffic Vol, veh/h	0	355	275	120	235	0
Future Vol, veh/h	0	355	275	120	235	0
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage, \#	-	0	0	-	0	-
Grade, \%	-	0	0	-	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	0	386	299	130	255	0

Major/Minor	Major1	Major2			Minor2		
Conflicting Flow All	429	0	-	0	750	364	
\quad Stage 1	-	-	-	-	364	-	
\quad Stage 2	-	-	-	-	386	-	
Critical Hdwy	4.12	-	-	-	6.42	6.22	
Critical Hdwy Stg 1	-	-	-	-	5.42	-	
Critical Hdwy Stg 2	-	-	-	-	5.42	-	
Follow-up Hdwy	2.218	-	-	-	3.518	3.318	
Pot Cap-1 Maneuver	1130	-	-	-	379	681	
Stage 1	-	-	-	-	703	-	
\quad Stage 2	-	-	-	-	687	-	
Platoon blocked, \%		-	-	-			
Mov Cap-1 Maneuver	1130	-	-	-	379	681	
Mov Cap-2 Maneuver	-	-	-	-	379	-	
Stage 1	-	-	-	-	703	-	

Approach	NB	SB	NE
HCM Control Delay, s	0	0	32
HCM LOS			D

Minor Lane/Major Mvmt	NELn1	NBL	NBT	SBT	SBR
Capacity (veh/h)	379	1130	-	-	-
HCM Lane V/C Ratio	0.674	-	-	-	-
HCM Control Delay (s)	32	0	-	-	-
HCM Lane LOS	D	A	-	-	-
HCM 95th \%tile Q(veh)	4.7	0	-	-	-

Intersection						
Int Delay, s/veh	1.3					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Mr			¢	个	
Traffic Vol, veh/h	0	65	40	355	275	0
Future Vol, veh/h	0	65	40	355	275	0
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	0	71	43	386	299	0

Major/Minor	Minor2	Major1		Major2	
Conflicting Flow All	771	299	299	0	-

Approach	EB	NB	SB
HCM Control Delay, s	10.4	0.8	0
HCM LOS	B		

Minor Lane/Major Mvmt	NBL	NBT EBLn1	SBT	SBR	
Capacity (veh/h)	1262	-	741	-	-
HCM Lane V/C Ratio	0.034	-	0.095	-	-
HCM Control Delay (s)	8	0	10.4	-	-
HCM Lane LOS	A	A	B	-	-
HCM 95th \%tile Q(veh)	0.1	-	0.3	-	-

Lane	NBLn1	EBLn1	WBLn1	SBLn1
Vol Left, \%	7%	73%	12%	0%
Vol Thru, \%	86%	25%	88%	33%
Vol Right, \%	7%	2%	0%	67%
Sign Control	Stop	Stop	Stop	Stop
Traffic Vol by Lane	70	240	40	120
LT Vol	5	175	5	0
Through Vol	60	60	35	40
RT Vol	5	5	0	80
Lane Flow Rate	76	261	43	130
Geometry Grp	1	1	1	1
Degree of Util (X)	0.101	0.333	0.057	0.158
Departure Headway (Hd)	4.785	4.591	4.738	4.357
Convergence, Y/N	Yes	Yes	Yes	Yes
Cap	749	783	754	823
Service Time	2.818	2.62	2.776	2.386
HCM Lane V/C Ratio	0.101	0.333	0.057	0.158
HCM Control Delay	8.4	9.9	8.1	8.2
HCM Lane LOS	A	A	A	A
HCM 95th-tile Q	0.3	1.5	0.2	0.6

Intersection						
Int Delay, s/veh	0.2					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	M			\uparrow	$\hat{}$	
Trafic Vol, veh/h	3	3	8	607	641	9
Future Vol, veh/h	3	3	8	607	641	9
Conflicting Peds, \#hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage,	e, \# 0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	3	3	9	674	712	10
Major/Minor	Minor2		Major1		Major2	
Conflicting Flow All	1409	717	722	0	-	0
Stage 1	717	-	-	-	-	-
Stage 2	692	-	-	-	-	-
Critical Hdwy	6.42	6.22	4.12	-	-	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	2.218	-	-	-
Pot Cap-1 Maneuver	153	430	880	-	-	-
Stage 1	484	-	-	-	-	-
Stage 2	497	-	-	-	-	-
Platoon blocked, \%				-	-	-
Mov Cap-1 Maneuver	151	430	880	-	-	-
Mov Cap-2 Maneuver	151	-	-	-	-	-
Stage 1	476	-	-	-	-	-
Stage 2	497	-	-	-	-	-
Approach	EB		NB		SB	
HCM Control Delay, s	21.6		0.1		0	
HCM LOS	C					
Minor Lane/Major Mvmt		NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)		880	-	224	-	-
HCM Lane V/C Ratio		0.01	-	0.03	-	
HCM Control Delay (s)		9.1	0	21.6	-	
HCM Lane LOS		A	A	C	-	
HCM 95th \%tile Q(veh)		0	-	0.1	-	

Lane Group	\Rightarrow EBL		NBL	\uparrow NBT	\downarrow	$\begin{aligned} & \downarrow \\ & \text { SBR } \end{aligned}$
Lane Configurations	\%	「	${ }^{*}$	4	4	「
Traffic Volume (vph)	125	60	15	805	605	30
Future Volume (vph)	125	60	15	805	605	30
Turn Type	Prot	pt+ov	Prot	NA	NA	pt+ov
Protected Phases	4	45	5	2	6	46
Permitted Phases						
Detector Phase	4	45	5	2	6	46
Switch Phase						
Minimum Initial (s)	8.0		8.0	10.0	10.0	
Minimum Split (s)	14.0		14.0	16.0	16.0	
Total Split (s)	20.0		15.0	70.0	55.0	
Total Split (\%)	22.2\%		16.7\%	77.8\%	61.1\%	
Yellow Time (s)	4.0		4.0	4.0	4.0	
All-Red Time (s)	2.0		2.0	2.0	2.0	
Lost Time Adjust (s)	-2.0		-2.0	-2.0	-2.0	
Total Lost Time (s)	4.0		4.0	4.0	4.0	
Lead/Lag			Lead		Lag	
Lead-Lag Optimize?			Yes		Yes	
Recall Mode	None		None	Min	Min	
Act Effct Green (s)	13.1	24.0	10.9	46.7	39.7	53.8
Actuated g/C Ratio	0.21	0.38	0.17	0.74	0.63	0.86
v / c Ratio	0.37	0.10	0.05	0.63	0.56	0.02
Control Delay	29.7	5.7	31.3	8.4	13.6	0.8
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	29.7	5.7	31.3	8.4	13.6	0.8
LOS	C	A	C	A	B	A
Approach Delay	21.9			8.8	12.9	
Approach LOS	C			A	B	
Intersection Summary						

Cycle Length: 90
Actuated Cycle Length: 62.9
Natural Cycle: 60
Control Type: Actuated-Uncoordinated
Maximum v/c Ratio: 0.63
Intersection Signal Delay: $11.9 \quad$ Intersection LOS: B
Intersection Capacity Utilization 56.0\%
Analysis Period (min) 15
ICU Level of Service B

Splits and Phases: 3: Epping Road (NH 27) \& Continental Drive

	4	7	4	4	\downarrow	\downarrow
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Group Flow (vph)	136	65	16	875	658	33
v/c Ratio	0.37	0.10	0.05	0.63	0.56	0.02
Control Delay	29.7	5.7	31.3	8.4	13.6	0.8
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	29.7	5.7	31.3	8.4	13.6	0.8
Queue Length 50th (ft)	49	0	6	166	201	0
Queue Length 95th (tt)	121	26	26	315	339	5
Internal Link Dist (ft)	2747			332	2112	
Turn Bay Length (t)		125	225			225
Base Capacity (vph)	489	694	336	1729	1505	1377
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.28	0.09	0.05	0.51	0.44	0.02
Intersection Summary						

Intersection						
Int Delay, s/veh	3.8					
Movement	NBL	NBT	SBT	SBR	NEL	NER
Lane Configurations		\uparrow	F		N	
Traffic Vol, veh/h	0	310	360	290	150	0
Future Vol, veh/h	0	310	360	290	150	0
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage, \#	-	0	0	-	0	-
Grade, \%	-	0	0	-	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	0	337	391	315	163	0

Major/Minor	Major1	Major2			Minor2		
Conflicting Flow All	706	0	-	0	886	549	
\quad Stage 1	-	-	-	-	549	-	
\quad Stage 2	-	-	-	-	337	-	
Critical Hdwy	4.12	-	-	-	6.42	6.22	
Critical Hdwy Stg 1	-	-	-	-	5.42	-	
Critical Hdwy Stg 2	-	-	-	-	5.42	-	
Follow-up Hdwy	2.218	-	-	-	3.518	3.318	
Pot Cap-1 Maneuver	892	-	-	-	315	535	
\quad Stage 1	-	-	-	-	579	-	
Stage 2	-	-	-	-	723	-	
Platoon blocked, \%		-	-	-			
Mov Cap-1 Maneuver	892	-	-	-	315	535	
Mov Cap-2 Maneuver	-	-	-	-	315	-	
Stage 1	-	-	-	-	579	-	

Approach	NB	SB	NE
HCM Control Delay, s	0	0	28.1
HCM LOS			D

Minor Lane/Major Mvmt	NELn1	NBL	NBT	SBT	SBR
Capacity (veh/h)	315	892	-	-	-
HCM Lane V/C Ratio	0.518	-	-	-	-
HCM Control Delay (s)	28.1	0	-	-	-
HCM Lane LOS	D	A	-	-	-
HCM 95th \%tile Q(veh)	2.8	0	-	-	-

Intersection						
Int Delay, s/veh	1.8					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	M			\uparrow	\uparrow	
Traffic Vol, veh/h	0	60	100	310	360	0
Future Vol, veh/h	0	60	100	310	360	0
Conflicting Peds, \#hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	0	65	109	337	391	0

Major/Minor	Minor2	Major1		Major2	
Conflicting Flow All	946	391	391	0	-

Approach	EB	NB	SB
HCM Control Delay, s	11.1	2	0
HCM LOS	B		

Minor Lane/Major Mvmt	NBL	NBT EBLn1	SBT	SBR	
Capacity (veh/h)	1168	-658	-	-	
HCM Lane V/C Ratio	0.093	-0.099	-	-	
HCM Control Delay (s)	8.4	0	11.1	-	-
HCM Lane LOS	A	A	B	-	-
HCM 95th \%tile Q(veh)	0.3	-	0.3	-	-

Intersection												
Intersection Delay, s/veh	9.5											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		${ }_{*}$			\dagger			\uparrow			\uparrow	
Traffic Vol, veh/h	90	55	5	5	95	0	5	60	5	0	65	225
Future Vol, veh/h	90	55	5	5	95	0	5	60	5	0	65	225
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	98	60	5	5	103	0	5	65	5	0	71	245
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0
Approach	EB			WB			NB				SB	
Opposing Approach	WB			EB			SB				NB	
Opposing Lanes	1			1			1				1	
Conflicting Approach Left	SB			NB			EB				WB	
Conflicting Lanes Left	1			1			1				1	
Conflicting Approach Right	NB			SB			WB				EB	
Conflicting Lanes Right	1			1			1				1	
HCM Control Delay	9.6			9			8.6				9.8	
HCM LOS	A			A			A				A	

Lane	NBLn1	EBLn1	WBLn1	SBLn1
Vol Left, \%	7%	60%	5%	0%
Vol Thru, \%	86%	37%	95%	22%
Vol Right, \%	7%	3%	0%	78%
Sign Control	Stop	Stop	Stop	Stop
Traffic Vol by Lane	70	150	100	290
LT Vol	5	90	5	0
Through Vol	60	55	95	65
RT Vol	5	5	0	225
Lane Flow Rate	76	163	109	315
Geometry Grp	1	1	1	1
Degree of Util (X)	0.105	0.228	0.152	0.372
Departure Headway (Hd)	4.949	5.042	5.029	4.251
Convergence, Y/N	Yes	Yes	Yes	Yes
Cap	720	708	708	842
Service Time	3.01	3.107	3.098	2.294
HCM Lane V/C Ratio	0.106	0.23	0.154	0.374
HCM Control Delay	8.6	9.6	9	9.8
HCM Lane LOS	A	A	A	A
HCM 95th-tile Q	0.4	0.9	0.5	1.7

Intersection						
Int Delay, s/veh	0.6					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	M			\uparrow	1	
Traffic Vol, veh/h		12	8	806	655	10
Future Vol, veh/h	14	12	8	806	655	10
Conflicting Peds, \#/hr		0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#		-	-	0	0	-
Grade, \%		-	-	0	0	-
Peak Hour Factor		90	90	90	90	90
Heavy Vehicles, \%	2	2		2	2	2
Mumt Flow	16	13	9	896	728	11
Major/Minor M	Minor2		Major1		Major2	
Conflicting Flow All	1648	734	739	0	-	0
Stage 1	734	-	-	-	-	-
Stage 2	914	-	-	-	-	-
Critical Hdwy	6.42	6.22	4.12	-	-	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	2.218	-	-	-
Pot Cap-1 ManeuverStage 1	109	420	867	-	-	
	475	-	-	-	-	-
Stage 2	391	-	-	-	-	-
Platoon blocked, \%				-	-	-
Mov Cap-1 Maneuver	107	420	867	-	-	-
Mov Cap-2 Maneuver	107	-	-	-	-	-
Stage 1 Stage 2	465	-	-	-	-	
	391	-	-	-	-	-
Approach	EB		NB		SB	
HCM Control Delay, s HCM LOS	31.8		0.1		0	
	D					
Minor Lane/Major Mvmt		NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)		867	-	163	-	-
HCM Lane V/C Ratio		0.01		0.177	-	-
HCM Control Delay (s)		9.2	0	31.8	-	
HCM Lane LOS		A	A	D	-	
HCM 95th \%tile Q(veh)		0	-	0.6	-	

Lane Group	$\begin{aligned} & \Rightarrow \\ & \text { EBL } \end{aligned}$	EBR	NBL	4NBT	$\frac{1}{1}$SBT	SBR
Lane Configurations	${ }^{*}$	「	${ }^{7}$	4	4	「゙
Traffic Volume（vph）	20	15	55	700	780	130
Future Volume（vph）	20	15	55	700	780	130
Turn Type	Prot	pt＋ov	Prot	NA	NA	pt＋ov
Protected Phases	4	45	5	2	6	46
Permitted Phases						
Detector Phase	4	45	5	2	6	46
Switch Phase						
Minimum Initial（s）	8.0		8.0	10.0	10.0	
Minimum Split（s）	14.0		14.0	16.0	16.0	
Total Split（s）	15.0		20.0	75.0	55.0	
Total Split（\％）	16．7\％		22．2\％	83．3\％	61．1\％	
Yellow Time（s）	4.0		4.0	4.0	4.0	
All－Red Time（s）	2.0		2.0	2.0	2.0	
Lost Time Adjust（s）	－2．0		－2．0	－2．0	－2．0	
Total Lost Time（s）	4.0		4.0	4.0	4.0	
Lead／Lag			Lead		Lag	
Lead－Lag Optimize？			Yes		Yes	
Recall Mode	None		None	Min	Min	
Act Effct Green（s）	10.3	25.6	11.2	56.0	44.6	60.1
Actuated g／C Ratio	0.14	0.34	0.15	0.75	0.60	0.81
v / c Ratio	0.09	0.03	0.23	0.56	0.78	0.11
Control Delay	34.0	10.0	34.0	5.4	18.6	0.7
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	34.0	10.0	34.0	5.4	18.6	0.7
LOS	C	A	C	A	B	A
Approach Delay	23.5			7.5	16.1	
Approach LOS	C			A	B	
Intersection Summary						

Cycle Length： 90
Actuated Cycle Length： 74.6
Natural Cycle： 65
Control Type：Actuated－Uncoordinated
Maximum v／c Ratio： 0.78
Intersection Signal Delay： 12.4
Intersection LOS：B
Intersection Capacity Utilization 59．0\％
ICU Level of Service B
Analysis Period（min） 15
Splits and Phases：3：Epping Road（NH 27）\＆Continental Drive

Lane Group	¢ EBL		4	¢ NBT	\downarrow SBT	¢ SBR
Lane Group Flow (vph)	22	17	61	778	867	144
v/c Ratio	0.09	0.03	0.23	0.56	0.78	0.11
Control Delay	34.0	10.0	34.0	5.4	18.6	0.7
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	34.0	10.0	34.0	5.4	18.6	0.7
Queue Length 50th (ft)	10	0	27	112	295	0
Queue Length 95th (ft)	33	14	66	172	507	11
Internal Link Dist (ft)	2747			332	2112	
Turn Bay Length (t)		125	225			225
Base Capacity (vph)	268	600	390	1704	1310	1301
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.08	0.03	0.16	0.46	0.66	0.11
Intersection Summary						

Major/Minor	Minor2	Major1		Major2	
Conflicting Flow All	1095	506	456	0	-
\quad Stage 1	506	-	-	-	-
\quad Stage 2	589	-	-		
Critical Hdwy	6.42	6.22	4.12	-	-
-	-	-			
Critical Hdwy Stg 1	5.42	-	-	-	-

Approach	EB	NB	SB
HCM Control Delay, s	24.6	0.6	0
HCM LOS	C		

Minor Lane/Major Mvmt	NBL	NBT EBLn1 EBLn2	SBT	SBR		
Capacity (veh/h)	1105	-360	566	-	-	
HCM Lane V/C Ratio	0.035	-0.602	0.137	-	-	
HCM Control Delay (s)	8.4	0	29	12.4	-	-
HCM Lane LOS	A	A	D	B	-	-
HCM 95th \%tile Q(veh)	0.1	-	3.8	0.5	-	-

Intersection						
Int Delay, s/veh	1.6					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	$\hat{\beta}$			\uparrow	M	
Traffic Vol, veh/h	260	5	0	125	0	70
Future Vol, veh/h	260	5	0	125	0	70
Conflicting Peds, \#hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage, \#	\# 0	-	-	0	0	-
Grade, \%	0	-	-	0	0	
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	289	6	0	139	0	78

Major/Minor	Major1	Major2	Minor1	
Conflicting Flow All	0	295	0431	292
Stage 1	-	- -	- 292	-
Stage 2	-	- -	- 139	-
Critical Hdwy	-	4.12	- 6.42	6.22
Critical Hdwy Stg 1	-	- -	- 5.42	
Critical Hdwy Stg 2	-	- -	- 5.42	-
Follow-up Hdwy	-	- 2.218	- 3.518	3.318
Pot Cap-1 Maneuver	-	1266	581	747
Stage 1	-	- -	- 758	
Stage 2	-	- -	- 888	-
Platoon blocked, \%	-	-	-	
Mov Cap-1 Maneuver	-	1266	- 581	747
Mov Cap-2 Maneuver	-	- -	- 581	
Stage 1	-	- -	- 758	
Stage 2	-	- -	- 888	

Approach	EB	WB	NB
HCM Control Delay, s	0	0	10.4
HCM LOS			B

Minor Lane/Major Mvmt	NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)	747	-	-1266	-	
HCM Lane V/C Ratio	0.104	-	-	-	-
HCM Control Delay (s)	10.4	-	-	0	-
HCM Lane LOS	B	-	-	A	-
HCM 95th \%tile Q(veh)	0.3	-	-	0	-

Intersection						
Int Delay, s/veh	0.1					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	M			\uparrow	F	
Traffic Vol, veh/h	3	3	8	752	786	9
Future Vol, veh/h	3	3	8	752	786	9
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	- None	
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, $\%$	2	2	2	2	2	2
Mvmt Flow	3	3	9	836	873	10

Major/Minor	Minor2	Major1		Major2	
Conflicting Flow All	1732	878	883	0	-
\quad Stage 1	878	-	-	-	-
\quad Stage 2	854	-	-		
Critical Hdwy	6.42	6.22	4.12	-	-
-	-	-			
Critical Hdwy Stg 1	5.42	-	-	-	-

Approach	EB	NB	SB
HCM Control Delay, s	18.4	0.1	0
HCM LOS	C		

Minor Lane/Major Mvmt	NBL	NBT EBLn1	SBT	SBR	
Capacity (veh/h)	766	-276	-	-	
HCM Lane V/C Ratio	0.012	-0.024	-	-	
HCM Control Delay (s)	9.8	0	18.4	-	-
HCM Lane LOS	A	A	C	-	-
HCM 95th \%tile Q(veh)	0	-	0.1	-	-

Lane Group	\Rightarrow EBL		NBL	\uparrow NBT	\downarrow	$\begin{aligned} & \downarrow \\ & \text { SBR } \end{aligned}$
Lane Configurations	\%	「	*	4	4	「
Traffic Volume (vph)	150	70	15	970	760	35
Future Volume (vph)	150	70	15	970	760	35
Turn Type	Prot	pt+ov	Prot	NA	NA	pt+ov
Protected Phases	4	45	5	2	6	46
Permitted Phases						
Detector Phase	4	45	5	2	6	46
Switch Phase						
Minimum Initial (s)	8.0		8.0	10.0	10.0	
Minimum Split (s)	14.0		14.0	16.0	16.0	
Total Split (s)	18.0		14.0	72.0	58.0	
Total Split (\%)	20.0\%		15.6\%	80.0\%	64.4\%	
Yellow Time (s)	4.0		4.0	4.0	4.0	
All-Red Time (s)	2.0		2.0	2.0	2.0	
Lost Time Adjust (s)	-2.0		-2.0	-2.0	-2.0	
Total Lost Time (s)	4.0		4.0	4.0	4.0	
Lead/Lag			Lead		Lag	
Lead-Lag Optimize?			Yes		Yes	
Recall Mode	None		None	Min	Min	
Act Effct Green (s)	12.9	27.2	10.2	57.2	46.5	64.5
Actuated g/C Ratio	0.16	0.35	0.13	0.73	0.59	0.82
v / c Ratio	0.57	0.13	0.07	0.79	0.76	0.03
Control Delay	41.2	6.3	35.9	12.0	18.7	0.7
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	41.2	6.3	35.9	12.0	18.7	0.7
LOS	D	A	D	B	B	A
Approach Delay	30.1			12.4	17.9	
Approach LOS	C			B	B	
Intersection Summary						

Cycle Length: 90
Actuated Cycle Length: 78.3
Natural Cycle: 65
Control Type: Actuated-Uncoordinated
Maximum v/c Ratio: 0.79
Intersection Signal Delay: $16.5 \quad$ Intersection LOS: B
Intersection Capacity Utilization 66.0\%
Analysis Period (min) 15
ICU Level of Service C

Splits and Phases: 3: Epping Road (NH 27) \& Continental Drive

				EBL	EBR	NBL
	NBT	SBT	SBR			
Lane Group	167	78	17	1078	844	39
Lane Group Flow (vph)	0.57	0.13	0.07	0.79	0.76	0.03
v/c Ratio	41.2	6.3	35.9	12.0	18.7	0.7
Control Delay	0.0	0.0	0.0	0.0	0.0	0.0
Queue Delay	41.2	6.3	35.9	12.0	18.7	0.7
Total Delay	77	0	8	285	322	0
Queue Length 50th (ft)	156	31	29	453	482	5
Queue Length 95th (ft)	2747			332	2112	
Internal Link Dist (ft)		125	225			225
Turn Bay Length (ft)	323	591	231	1612	1313	1306
Base Capacity (vph)	0	0	0	0	0	0
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0.52	0.13	0.07	0.67	0.64	0.03
Reduced v/c Ratio						
Intersection Summary						

Intersection						

Approach	EB	NB	SB
HCM Control Delay, s	23.7	1.8	0
HCM LOS	C		

Minor Lane/Major Mvmt	NBL	NBT EBLn1 EBLn2	SBT	SBR		
Capacity (veh/h)	968	-259	413	-	-	
HCM Lane V/C Ratio	0.115	-0.429	0.175	-	-	
HCM Control Delay (s)	9.2	0	29	15.6	-	-
HCM Lane LOS	A	A	D	C	-	-
HCM 95th \%tile Q(veh)	0.4	-	2	0.6	-	-

Intersection						
Int Delay, s/veh	1.2					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	$\hat{\beta}$			\uparrow	M	
Traffic Vol, veh/h	160	5	0	345	0	70
Future Vol, veh/h	160	5	0	345	0	70
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage, \#	\#	-	-	0	0	-
Grade, \%	0		-	0	0	
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	178	6	0	383	0	78

Major/Minor	Major1	Major2		Minor1		
Conflicting Flow All	0	0	184	0	564	181
\quad Stage 1	-	-	-	-	181	-
Stage 2	-	-	-	-	383	-
Critical Hdwy	-	-	4.12	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	-	-	2.218	-3.518	3.318	
Pot Cap-1 Maneuver	-	-	1391	-	487	862
\quad Stage 1	-	-	-	-	850	-
Stage 2	-	-	-	-	689	-
Platoon blocked, \%	-	-		-		
Mov Cap-1 Maneuver	-	-	1391	-	487	862
Mov Cap-2 Maneuver	-	-	-	-	487	-
Stage 1	-	-	-	-	850	-
Stage 2	-	-	-	-	689	-

Approach	EB	WB	NB
HCM Control Delay, s	0	0	9.6
HCM LOS			A

Minor Lane/Major Mvmt	NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)	862	-	-1391	-	
HCM Lane V/C Ratio	0.09	-	-	-	-
HCM Control Delay (s)	9.6	-	-	0	-
HCM Lane LOS	A	-	-	A	-
HCM 95th \%tile Q(veh)	0.3	-	-	0	-

Intersection						
Int Delay, s/veh	0.4					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	M			\uparrow	$\hat{\beta}$	
Traffic Vol, veh/h	14	12	8	971	820	10
Future Vol, veh/h	14	12	8	971	820	10
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage,	\# \# 0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	16	13	9	1079	911	11
Major/Minor	Minor2		Major1		Major2	
Conflicting Flow All	2014	917	922	0	-	0
Stage 1	917	-	-	-	-	-
Stage 2	1097	-	-	-	-	-
Critical Hdwy	6.42	6.22	4.12	-	-	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	2.218	-	-	-
Pot Cap-1 Maneuver	65	330	741	-	-	-
Stage 1	390	-	-	-	-	-
Stage 2	320	-	-	-	-	-
Platoon blocked, \%				-	-	-
Mov Cap-1 Maneuver	63	330	741	-	-	-
Mov Cap-2 Maneuver	187	-	-	-	-	-
Stage 1	378	-	-	-	-	-
Stage 2	320	-	-	-	-	-
Approach	EB		NB		SB	
HCM Control Delay, s	22.5		0.1		0	
HCM LOS	C					
Minor Lane/Major Mvmt		NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)		741	-	234	-	-
HCM Lane V/C Ratio		0.012	-	0.123	-	-
HCM Control Delay (s)		9.9	0	22.5	-	-
HCM Lane LOS		A	A	C	-	-
HCM 95th \%tile Q(veh)		0	-	0.4	-	-

Lane Group	$\begin{aligned} & > \\ & \text { EBL } \end{aligned}$	EBR	NBL	¢ ${ }_{\text {NBT }}$	¢SBT	SBR
Lane Configurations	${ }^{*}$	「	${ }^{7}$	4	4	「'
Traffic Volume (vph)	86	15	55	670	800	140
Future Volume (vph)	86	15	55	670	800	140
Turn Type	Prot	pt+ov	Prot	NA	NA	pt+ov
Protected Phases	4	45	5	2	6	46
Permitted Phases						
Detector Phase	4	45	5	2	6	46
Switch Phase						
Minimum Initial (s)	8.0		8.0	10.0	10.0	
Minimum Split (s)	14.0		14.0	16.0	16.0	
Total Split (s)	15.0		20.0	75.0	55.0	
Total Split (\%)	16.7\%		22.2\%	83.3\%	61.1\%	
Yellow Time (s)	4.0		4.0	4.0	4.0	
All-Red Time (s)	2.0		2.0	2.0	2.0	
Lost Time Adjust (s)	-2.0		-2.0	-2.0	-2.0	
Total Lost Time (s)	4.0		4.0	4.0	4.0	
Lead/Lag			Lead		Lag	
Lead-Lag Optimize?			Yes		Yes	
Recall Mode	None		None	Min	Min	
Act Effct Green (s)	10.8	26.1	11.2	57.5	46.1	62.1
Actuated g/C Ratio	0.14	0.34	0.15	0.75	0.60	0.81
v/c Ratio	0.38	0.03	0.24	0.53	0.79	0.12
Control Delay	38.7	9.8	34.9	5.3	19.7	0.7
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	38.7	9.8	34.9	5.3	19.7	0.7
LOS	D	A	C	A	B	A
Approach Delay	34.4			7.5	16.9	
Approach LOS	C			A	B	
Intersection Summary						

Cycle Length: 90
Actuated Cycle Length: 76.6
Natural Cycle: 65
Control Type: Actuated-Uncoordinated
Maximum v/c Ratio: 0.79
Intersection Signal Delay: 14.0
Intersection LOS: B
Intersection Capacity Utilization 59.0\%
ICU Level of Service B
Analysis Period (min) 15
Splits and Phases: 3: Epping Road (NH 27) \& Continental Drive

Lane Group	¢ EBL		${ }_{\text {NBL }}^{4}$	¢ NBT	\downarrow SBT	\pm
Lane Group Flow (vph)	96	17	61	744	889	156
v / c Ratio	0.38	0.03	0.24	0.53	0.79	0.12
Control Delay	38.7	9.8	34.9	5.3	19.7	0.7
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	38.7	9.8	34.9	5.3	19.7	0.7
Queue Length 50th (ft)	46	0	29	112	323	0
Queue Length 95th (ft)	97	14	66	167	548	12
Internal Link Dist (ft)	208			332	2112	
Turn Bay Length (t)		125	225			225
Base Capacity (vph)	260	628	380	1672	1274	1295
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.37	0.03	0.16	0.44	0.70	0.12
Intersection Summary						

Intersection						
Int Delay, s/veh	1.5					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	F			\uparrow	M	
Traffic Vol, veh/h	268	5	0	134	0	70
Future Vol, veh/h	268	5	0	134	0	70
Conflicting Peds, \#hr	0	0	0	0	0	0
Sign Control F	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage, \#	\# 0	-	-	0	0	-
Grade, \%	0		-	0	0	
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	298	6	0	149	0	78

Major/Minor	Major1	Major2		Minor1		
Conflicting Flow All	0	0	304	0	450	301
\quad Stage 1	-	-	-	-	301	-
Stage 2	-	-	-	-	149	-
Critical Hdwy	-	-	4.12	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	-	-	2.218	-3.518	3.318	
Pot Cap-1 Maneuver	-	-	1257	-	567	739
\quad Stage 1	-	-	-	-	751	-
Stage 2	-	-	-	-	879	-
Platoon blocked, \%	-	-		-		
Mov Cap-1 Maneuver	-	-	1257	-	567	739
Mov Cap-2 Maneuver	-	-	-	-	567	-
Stage 1	-	-	-	-	751	-
Stage 2	-	-	-	-	879	-

Approach	EB	WB	NB
HCM Control Delay, s	0	0	10.4
HCM LOS			B

Minor Lane/Major Mvmt	NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)	739	-	-1257	-	
HCM Lane V/C Ratio	0.105	-	-	-	-
HCM Control Delay (s)	10.4	-	-	0	-
HCM Lane LOS	B	-	-	A	-
HCM 95th \%tile Q(veh)	0.4	-	-	0	-

Major/Minor	Major1	Major2						Minor1	
Conflicting Flow All	0	0	39	0	278	38			
\quad Stage 1	-	-	-	-	38	-			
Stage 2	-	-	-	-	240	-			
Critical Hdwy	-	-	4.12	-	6.42	6.22			
Critical Hdwy Stg 1	-	-	-	-	5.42	-			
Critical Hdwy Stg 2	-	-	-	-	5.42	-			
Follow-up Hdwy	-	-	2.218	-3.518	3.318				
Pot Cap-1 Maneuver	-	-	1571	-712	1034				
\quad Stage 1	-	-	-	-	984	-			
Stage 2	-	-	-	-	800	-			
Platoon blocked, \%	-	-							
Mov Cap-1 Maneuver	-	-	1571	-	700	1034			
Mov Cap-2 Maneuver	-	-	-	-	700	-			
Stage 1	-	-	-	-	984	-			
Stage 2	-	-	-	-	786	-			

Approach	EB	WB	NB
HCM Control Delay, s	0	0.8	9.1
HCM LOS			A

Minor Lane/Major Mvmt	NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)	966	-	-1571	-	
HCM Lane V/C Ratio	0.093	-	-0.016	-	
HCM Control Delay (s)	9.1	-	-	7.3	0
HCM Lane LOS	A	-	-	A	A
HCM 95th \%tile Q(veh)	0.3	-	-	0	-

Lane Group	\Rightarrow EBL	EBR	NBL	\uparrowNBT	¢SBT	SBR
Lane Configurations	${ }^{7}$	「	${ }^{7}$	4	4	F'
Traffic Volume (vph)	209	70	15	935	778	45
Future Volume (vph)	209	70	15	935	778	45
Turn Type	Prot	pt+ov	Prot	NA	NA	pt+ov
Protected Phases	4	45	5	2	6	46
Permitted Phases						
Detector Phase	4	45	5	2	6	46
Switch Phase						
Minimum Initial (s)	8.0		8.0	10.0	10.0	
Minimum Split (s)	14.0		14.0	16.0	16.0	
Total Split (s)	18.0		14.0	72.0	58.0	
Total Split (\%)	20.0\%		15.6\%	80.0\%	64.4\%	
Yellow Time (s)	4.0		4.0	4.0	4.0	
All-Red Time (s)	2.0		2.0	2.0	2.0	
Lost Time Adjust (s)	-2.0		-2.0	-2.0	-2.0	
Total Lost Time (s)	4.0		4.0	4.0	4.0	
Lead/Lag			Lead		Lag	
Lead-Lag Optimize?			Yes		Yes	
Recall Mode	None		None	Min	Min	
Act Effct Green (s)	13.9	28.4	10.4	56.2	45.7	64.9
Actuated g/C Ratio	0.18	0.36	0.13	0.72	0.58	0.83
v/c Ratio	0.74	0.12	0.07	0.78	0.80	0.04
Control Delay	49.9	6.3	36.1	11.7	20.3	0.6
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	49.9	6.3	36.1	11.7	20.3	0.6
LOS	D	A	D	B	C	A
Approach Delay	39.0			12.1	19.2	
Approach LOS	D			B	B	
Intersection Summary						

Cycle Length: 90
Actuated Cycle Length: 78.4
Natural Cycle: 70
Control Type: Actuated-Uncoordinated
Maximum v/c Ratio: 0.80
Intersection Signal Delay: 18.6
Intersection LOS: B
Intersection Capacity Utilization 67.5\%
ICU Level of Service C
Analysis Period (min) 15
Splits and Phases: 3: Epping Road (NH 27) \& Continental Drive

Lane Group	*	EBR	4	¢	\ddagger SBT	\pm
Lane Group Flow (vph)	232	78	17	1039	864	50
v/c Ratio	0.74	0.12	0.07	0.78	0.80	0.04
Control Delay	49.9	6.3	36.1	11.7	20.3	0.6
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	49.9	6.3	36.1	11.7	20.3	0.6
Queue Length 50th (ft)	116	0	8	262	336	0
Queue Length 95th (ft)	\#255	31	29	410	506	5
Internal Link Dist (ft)	208			332	2112	
Turn Bay Length (ft)		125	225			225
Base Capacity (vph)	327	612	233	1581	1328	1315
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.71	0.13	0.07	0.66	0.65	0.04
Intersection Summary						

\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.

Approach	EB	NB	SB
HCM Control Delay, S	25.5	1.8	0
HCM LOS	D		

Minor Lane/Major Mvmt	NBL	NBT EBLn1 EBLn2	SBT	SBR		
Capacity (veh/h)	956	-252	403	-	-	
HCM Lane V/C Ratio	0.116	-0.472	0.179	-	-	
HCM Control Delay (s)	9.3	0	31.4	15.9	-	-
HCM Lane LOS	A	A	D	C	-	-
HCM 95th \%tile Q(veh)	0.4	-	2.3	0.6	-	-

Intersection						
Int Delay, s/veh	2.3					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	$\hat{\beta}$			\uparrow	M	
Traffic Vol, veh/h	211	9	12	48	2	68
Future Vol, veh/h	211	9	12	48	2	68
Conflicting Peds, \#hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized		None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage, \#	\# 0		-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	234	10	13	53	2	76

Major/Minor	Major1	Major2						Minor1		
Conflicting Flow All	0	0	244	0	318	239				
\quad Stage 1	-	-	-	-	239	-				
Stage 2	-	-	-	-	79	-				
Critical Hdwy	-	-	4.12	-	6.42	6.22				
Critical Hdwy Stg 1	-	-	-	-	5.42	-				
Critical Hdwy Stg 2	-	-	-	-	5.42	-				
Follow-up Hdwy	-	-	2.218	-3.518	3.318					
Pot Cap-1 Maneuver	-	-	1322	-	675	800				
Stage 1	-	-	-	-	801	-				
Stage 2	-	-	-	-	944	-				
Platoon blocked, \%	-	-		-						
Mov Cap-1 Maneuver	-	-	1322	-	668	800				
Mov Cap-2 Maneuver	-	-	-	-	668	-				
Stage 1	-	-	-	-	801	-				
Stage 2	-	-	-	-	935	-				

Approach	EB	WB	NB
HCM Control Delay, s	0	1.6	10
HCM LOS			B

Minor Lane/Major Mvmt	NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)	796	-	-1322	-	
HCM Lane V/C Ratio	0.098	-	-	0.01	-
HCM Control Delay (s)	10	-	-	7.8	0
HCM Lane LOS	B	-	-	A	A
HCM 95th \%tile Q(veh)	0.3	-	-	0	-

[^0]: ${ }^{\mathrm{a}}$ In vehicles per hour adjacent to the site. Volumes obtained from Figures 2 and 3.
 ${ }^{\mathrm{b}} \mathrm{SB}=$ southbound, $\mathrm{NB}=$ northbound, $\mathrm{WB}=$ westbound and $\mathrm{EB}=$ eastbound. Percentages from volumes on Figures 2 and 3.

[^1]: ${ }^{1}$ Vanasse Hangen Brustlin, Inc. (VHB); Corridor Study: Epping Road (NH Route 27), Exeter, NH; December 2020.

[^2]: 2 A Policy on Geometric Design of Highways and Streets; American Association of State Highway and Transportation Officials (AASHTO); 2018.

[^3]: 3 Trip Generation, $10^{\text {th }}$ Edition. Institute of Transportation Engineers; Washington, DC; 2017.

[^4]: ${ }^{4}$ Trip Generation Handbook; 2 ${ }^{\text {nd }}$ Edition; Institute of Transportation Engineers; Washington, DC; June 2004.

[^5]: 5 Highway Capacity Manual 6th Edition, Transportation Research Board; Washington, D.C.; 2016.
 6 Synchro plus SimTraffic 11; Trafficware LLC.; Sugar Land, TX; 2019.

[^6]: ${ }^{\text {a }}$ Volume-to-capacity ratio.
 ${ }^{\mathrm{b}}$ Average control delay in seconds per vehicle.

[^7]: ${ }^{\text {c }}$ Level of service.
 ${ }^{d}$ Average $/ 95^{\text {th }}$ percentile queue length in feet per lane (assuming 25 feet per vehicle).

[^8]: ${ }^{\text {a }}$ Volume-to-capacity ratio.
 ${ }^{\mathrm{b}}$ Average control delay in seconds per vehicle.

[^9]: ${ }^{c}$ Level of service.
 ${ }^{d}$ Average/ $95^{\text {th }}$ percentile queue length in feet per lane (assuming 25 feet per vehicle).

[^10]: 7 Highway Capacity Manual $6^{\text {th }}$ Edition, Transportation Research Board; Washington, D.C.; 2016.

