DES Waste Management Division 29 Hazen Drive; PO Box 95 Concord, NH 03302-0095

ANNUAL SUMMARY REPORT
CALENDAR YEAR 2017
CROSS ROAD LANDFILL
EXETER, NEW HAMPSHIRE
NHDES SITE # 198401081
GROUNDWATER MANAGEMENT PERMIT #198401081-E-004
PROJECT NO. 978

Prepared For:
Town of Exeter, New Hampshire
10 Front Street
Exeter, New Hampshire 03833
Contact Name: Ms. Jennifer Mates, P.E.
Contact Phone No. (603) 773-6157

JEFFREY
D.
ROW
Nr

Prepared by:

GZA GeoEnvironmental, Inc. 5 Commerce Park North, Suite 201 Bedford, New Hampshire 03110 Phone Number: (603) 232-8740

Contact Name: Ms. Dawna M. Tousignant, P.E. Contact Email: dawna.tousignant@gza.com

GZA File No.: 04.0021270.29

Date of Report: January 31, 2018

Groundwater Monitoring Report Cover Sheet

Site Name: Cross Road Landfill and Stump Dump
Town: Exeter, New Hampshire
Permit #: GWP-198401081-E-004
Type of Submittal (Check all that apply)
□ Periodic Summary Report (year): 2017
☐ Data Submittal (per Condition #7 of Permit):
Check each box where the answer to any of the following questions is "YES"
Sampling Results
During the most recent monitoring event, were any <u>new</u> compounds detected at any sampling point? Well/Compound:
 Are there any detections of contamination in drinking water that is untreated prior to use? Well/Compound: Do compounds detected exceed AGQS?
 □ Was free product detected for the <u>first time</u> in any monitoring point? □ Surface Water (<i>visible sheen</i>) □ Groundwater (1/8" or greater thickness) Location/Thickness:
Contaminant Trends
Do sampling results show an increasing concentration trend in any source area monitoring well? Well/Compound:
Do sampling results indicate an AGQS violation in any of the GMZ boundary wells? Well/Compound:
Recommendations
□ Does the report include any recommendations requiring DES action? (Do not check this box if the only recommendation is to continue with existing permit conditions.)

This form is to be completed for groundwater monitoring data submittals and periodic summary reports submitted to the New Hampshire Department of Environmental Services Waste Management Division.

Proactive by Design

GEOTECHNICA

ENVIRONMENTAL

ECOLOGICAL

WATER

CONSTRUCTION MANAGEMENT

5 Commerce Park North Suite 201 Bedford, NH 03110 T: 603.623.3600 F: 603.624.9463 www.qza.com

January 31, 2018 File No. 04.0021270.29

Groundwater Management Permit Coordinator
New Hampshire Department of Environmental Services
Waste Management Division
29 Hazen Drive, P.O. Box 95
Concord, New Hampshire 03302-0095

Re: Annual Summary Report Calendar Year 2017
Cross Road Landfill
Exeter, New Hampshire
Groundwater Management Permit No. GWP-198401081-E-004

Dear Permit Coordinator:

On behalf of the Town of Exeter (Town), GZA GeoEnvironmental, Inc. (GZA) is pleased to provide the New Hampshire Department of Environmental Services (NHDES) this report summarizing water quality monitoring at the Cross Road Landfill (Landfill; site) in Exeter during calendar year 2017. This report has been submitted to fulfill the requirement of an Annual Summary Report for the Landfill for calendar year 2017, as required by Condition No. 7 of the Groundwater Management Permit (Permit; GWP-198401081-E-004) issued on December 16, 2013 and revised on October 13, 2014.

This report includes GZA's conclusions and recommendations regarding the Landfill water quality monitoring completed in accordance with the Permit and focuses on the results from the November 2017 monitoring round. The results of the April 2017 sampling were previously submitted to NHDES in GZA's data transmittal¹ dated June 13, 2017. GZA's work and this report are subject to the attached **Limitations**.

The following data summary documents are attached:

- Table 1 summarizing the results of water quality monitoring associated with the Landfill through 2017, including results of analytical laboratory and field screening analyses;
- Table 2 summarizing recent surface water and groundwater level elevation data;
- Plots 1A through 5D illustrating primary indicator water quality parameter concentration data;

¹ April 2017 Data Transmittal, Cross Road Landfill, Exeter, New Hampshire, prepared by GZA dated June 13, 2017.

- Figure 1 illustrating Landfill and vicinity features including water quality monitoring locations;
- Figure 2 summarizing recent Landfill water quality and elevation data; and
- Figure 3 illustrating a hydrogeologic cross-section from the Landfill to the Exeter River.

The following sections summarize recent work performed, results, water quality trends, and GZA's conclusions and recommendations.

WORK PERFORMED

PERMIT-RELATED LANDFILL WATER QUALITY MONITORING

In accordance with Condition No. 7 of the Permit, water quality monitoring during the reporting period included sampling in April and November at the following sampling locations depicted on **Figure 1**:

- Nine groundwater monitoring wells (RFW-2, RFW-3, RFW-4, GZ-1L, GZ-2L, GZ-3L, GZ-104, GZ-201 and GZ-202A);²
- Two piezometers (P-9R [a.k.a., SW-P-9, P-9, and north spring], and P-2R [a.k.a. south spring, November monitoring round only]); and
- Two surface water sampling locations (SW-17 [groundwater seep located proximate to the Exeter River] and SW-13 [November monitoring round only]).

Due to low groundwater levels at monitoring well GMW-11, a water quality sample could not be collected during April or November 2017.

Available water quality data for historical Landfill sampling locations include the results of sampling from May 1992 through November 2017 and are summarized in **Table 1**. Water quality monitoring has historically included volatile organic compounds (VOCs), arsenic, barium, cadmium, chloride, chromium, iron, lead, mercury, manganese, nitrate, total kjeldahl nitrogen (TKN), selenium, silver, and thallium. Sampling frequencies for individual water quality parameters and locations have been modified over time, with modifications based on the results of monitoring.

As required by the Permit (GWP-198401081-E-004), current water quality monitoring includes sample collection and analyses for specific conductance, pH, chloride, nitrate, TKN, iron, manganese, and arsenic biannually during November and April. During the November groundwater sampling round, VOCs, barium, cadmium, chromium, lead, mercury, selenium, and silver were also analyzed as required by the permit.

With the exception of wells GZ-1L, GZ-2L, and GZ-3L, each of the Permit-related Landfill groundwater quality monitoring wells and piezometers are screened within overburden. Consistent with the Permit and standard NHDES requirements, overburden groundwater and groundwater seep samples collected for analytical laboratory analysis of metals concentrations are field-filtered, and the data represent dissolved concentrations. Surface

² Well GMW-11 is required by the Permit but could not be sampled due to the observed dry condition of the well.

water and bedrock groundwater samples for analytical laboratory analysis of metals concentrations are not field-filtered, and the data represent total concentrations.

Except as noted, Civil & Environmental Consultants, Inc. (CEC) performs sample collection and field screening on behalf of the Town. Water quality samples are submitted by CEC to Eastern Analytical, Inc. (EAI), of Concord, New Hampshire for analytical laboratory analyses. GZA understands that copies of CEC's reports and EAI's analytical laboratory reports are submitted to the NHDES by the Town. GZA provides environmental consulting support to the Town and is provided with copies of CEC's field screening and EAI's laboratory reports for summary and evaluation of the data.

REVISED CONCEPTUAL SITE MODEL

The following describes GZA's Conceptual Site Model (CSM) for the Landfill. The conceptual model provides a summary of our understanding of site hydrogeology and contaminant distribution and transport, and is described in the following subsections.

HYDROGEOLOGY

Geology

Based on the results of subsurface explorations at and within the vicinity of the Landfill³ and published information, the geology beneath the Landfill includes a sequence of glacially derived sediments overlying a fractured metasedimentary bedrock. A hydrostratigraphic cross section through the Landfill and the area east of the Landfill is illustrated on **Figure 3**. Overburden geology includes up to 99 feet (RFW-3) of glacial outwash sand and gravel overlying a thin (about 4 feet) discontinuous layer of glacial till. The thickness of the sand and gravel deposit beneath the Landfill area varies, in part, due to historical sand and gravel mining. Up to 11 feet of silt and clay was encountered in certain borings drilled along the western side of the Landfill. The silt and clay unit may be associated with glaciolacustrian deposits identified to the west of the site underlying the Jones Swamp, or may be the result of a temporary ice damming on the surface of the glacial outwash sand and gravel during deglaciation.

Overburden borings drilled along the eastern side of the Landfill and further east of the Landfill encountered between 10 feet to 31 feet of primarily fine sand glacial outwash deposits. A fine sand, silt, and clay deposit interbedded with sand and gravel layers was encountered at a depth of 31 feet below ground surface (bgs) within one boring that was drilled to a total depth of 57 feet bgs at a location east of the Landfill (GZ-107). Sand and gravel deposits were also encountered within the generally fine sand outwash deposits encountered to the east of the Landfill.

Bedrock cored beneath the site includes metasedimentary rock consisting of a generally fresh and slightly fractured fine-grained gray to purple-gray phyllite. Weston described bedrock cores drilled from borings RFW-1 and RFW-4 as gray, fine-grained schist belonging to the Eliot Formation. Based on review of the USGS map titled "Bedrock Geologic Map of New Hampshire," dated 1997, both of the rock types cored beneath the site are consistent with the description provided for the Eliot Formation. The bedrock surface encountered in the borings generally slopes downward from a high of about elevation 82 feet (GZ-2L) to the north (about elevation 47 feet

³ Supplemental Hydrogeologic Investigation, 2002 Annual Water Quality Monitoring, Cross Road Landfill, prepare by GZA dated May 2002.

[RWF-4]) and east (about elevation 35 feet [RFW-1]). South of boring GZ-2L, the bedrock surface slopes downward to the south as suggested by the elevation of the bedrock surface encountered in boring GZ-3L (about 69 feet). East of RFW-1 the bedrock surface appears to slope upward, as suggested by the elevation of the bedrock surface encountered in boring GZ-1L (about 44 feet) and bedrock outcrops observed in the area of SW-17.

Based on review of the USGS map titled "Lineament Map of Area 1 of the New Hampshire Bedrock Aquifer Assessment, Southeastern New Hampshire," dated 1997, a lineament, identified using 1:250,000-scale side-looking airborne radar imagery, transects the site as shown on **Figure 1**. If this lineament is indicative of the presence of an interconnected set of fractures in bedrock (i.e., a potential fracture zone) located beneath the site, it may represent a preferential pathway for groundwater flow. Notwithstanding, the presence of a bedrock fracture zone at this location has not been confirmed, and the shallow bedrock cored within boring GZ-1L was not highly fractured. No other lineaments were identified crossing or adjacent to the site.

Groundwater Flow

Groundwater within outwash sands is estimated to flow radially away from the Landfill. The estimated horizontal component of the direction of groundwater flow ranges from east-northeast beneath the central and eastern portions of the Landfill to northwest beneath the northwestern portion of the Landfill near the Jones Swamp. Groundwater surface elevation contours, developed based on water level measurements obtained during November 2017 by CEC, are shown on **Figure 2**. Historical depth-to-water and water surface elevation data collected by GZA and others are summarized in **Table 2**. Historical water quality data are generally consistent with the estimated radial flow pattern and indicate contaminant transport in overburden toward the north with transport locally northwest and northeast.

Based on the November 2017 data, the calculated estimate of the average horizontal component of the overburden hydraulic gradient beneath the site is approximately 0.01 and varies from approximately 0.024 (beneath the northeast portion of site) to 0.007 (beneath the central portion of site).

As discussed in GZA's May 2002 Supplemental Hydrogeologic Investigation Report, recharge from the sedimentation ponds located along the southern site boundary may cause a local reversal in the direction of shallow overburden groundwater flow south of the Landfill. The extent of this effect has not been evaluated, but would likely have a limited effect on the overall direction of groundwater flow due to the relatively high hydraulic conductivity of the sand and gravel unit underlying the ponds.

Upward vertical components of hydraulic head gradient beneath the Landfill have been measured between the bedrock and overburden. This upward vertical gradient suggests groundwater discharge from bedrock to overburden may occur. The measured difference in hydraulic head between overburden and bedrock at the GZ-1 and GZ-3 locations on July 23, 2001 and August 9, 2001 was 2.0 feet (GZ-1) and greater than 4.6 feet and 0.1 feet (GZ-3), respectively.

Estimates of hydraulic conductivity for the sand and gravel unit based on slug testing range from 4.7x10⁻³ centimeter per second (cm/sec) to 7.0x10⁻³ cm/sec. Based on an average estimated hydraulic conductivity of 5.5x10⁻³ cm/sec, an average hydraulic gradient of about 0.01, and an assumed effective porosity of 0.30, the estimated average seepage velocity for the sand and gravel unit beneath the Landfill is approximately 0.6 feet per day. Based on an average estimated hydraulic conductivity of 5.5x10⁻³ cm/sec, and average hydraulic gradient from the eastern side of the Landfill to the seep located east of the Landfill of about 0.024, and an

assumed effective porosity of 0.30, the estimated average seepage velocity for the sand and gravel unit beneath the Landfill is approximately 1.2 feet per day.

Based on constant head pumping tests of bedrock well GZ-3L, an effective hydraulic conductivity of about 2.2×10^{-4} cm/sec is estimated for the upper 20 feet of the bedrock at this location. This value provides a measure of how rapidly groundwater can flow to the well under pumping conditions relative to flow in a porous media. Due to the nature of groundwater flow through fractured rock, this value, which assumes porous media flow, should not be used to calculate estimates of seepage velocities for fractured bedrock.

Based on this understanding of the horizontal and vertical direction of groundwater flow beneath the site, the areas located to the southwest, south, and southeast of the Landfill that are currently not supplied with municipal water are considered upgradient of the Landfill. The effects of bedrock groundwater extraction could alter the direction of groundwater flow in bedrock beneath the site. Similarly, the presence of interconnected bedrock fractures or fracture zones may create preferential pathways for groundwater flow and Landfill contaminant transport. As indicated above, the presence of significant zones of interconnected fractures or fracture zones has not been identified beneath the site.

CONTAMINANT DISTRIBUTION/TRANSPORT

The following subsection describes the site conceptual model with respect to contaminant, distribution, and transport. The term contaminant as used herein refers to dissolved-phase VOCs, metals, and inorganic parameters with a Landfill source. Routine water quality monitoring has been on-going at the Landfill since May 1992, and Landfill post-closure water quality monitoring has been on-going in accordance with a Permit since November 1996. Historical Landfill groundwater quality data are summarized in **Table 1**. Water quality monitoring locations are shown on **Figure 1**. Contaminant concentration trends are described in the *Water Quality Trend Evaluation* section of this report.

In general, the results of historical and recent Landfill groundwater quality and elevation data indicate contaminants are transported in overburden toward the north with transport locally toward the northwest and northeast, likely discharging to the Exeter River. Therefore, sampling locations RFW-3, RFW-4, and SW-P-9 are downgradient of the Landfill; RFW-2 is located hydraulically sidegradient of the Landfill; and GZ-3L (bedrock) is assumed to be upgradient of the Landfill.

Supplemental hydrogeologic investigations to the east of the Landfill and descriptions of the work performed are included in GZA's October 16, 2009 and January 18, 2013 reports.⁴ These off-site investigations have been focused on evaluating the source of Landfill-related groundwater contaminants discharged through a seep located proximate to the Exeter River and concluded that while other sources may be possible, the most likely source is the Landfill.

The areas located north and east of the Landfill are zoned for residential purposes and are supplied with municipal water. While GZA found evidence of residential bedrock groundwater supply wells within the study area, the residences were reportedly connected to the municipal water supply, and wells were reportedly not used as drinking water sources. Three of these wells were sampled and analyzed for landfill-related contaminants during

⁴ Reports by GZA titled "Calendar Year 2007/2008 Annual Report, Cross Road Landfill, Exeter, New Hampshire, Groundwater Management Permit No. GWP-198401081-E-003," and "Annual Summary Report Calendar Year 2012, Application for Groundwater Management Permit Renewal, Cross Road Landfill, Exeter, New Hampshire, Groundwater Management Permit No. GWP-198401081-E-003," dated October 16, 2009 and January 18, 2013, respectively.

2013; however, the results of the analyses did not indicate that the groundwater intersected by the open borehole portion of the wells had been impacted by the Landfill.

To evaluate off-site impacts, shallow overburden groundwater monitoring wells GZ-101 through GZ-107 were installed in 2009. Based on the results of the shallow overburden well sampling, potential Landfill-related impacts to overburden groundwater quality were identified in the vicinity of the groundwater seep (GZ-102 and GZ-104). The general direction of groundwater flow and limited surficial geophysical (electrical conductivity methods) evidence suggested a Landfill source. Monitoring wells were subsequently installed along Juniper Ridge Road (GZ-201) and immediately east of the Landfill (GZ-202 and GZ-202A) to further evaluate the source of the Landfill-related contaminants in groundwater in the vicinity of the seep.

April and November 2017 arsenic, iron, and manganese concentration data are summarized on **Figure 2** to illustrate the spatial distribution of these landfill-related contaminants. The data summarized on **Figure 2** are consistent with a landfill source migrating east-northeastward toward the seep and suggest a background contribution (evidence by the presence of manganese and/or iron at concentrations exceeding the New Hampshire Ambient Groundwater Standards (NH AQGS) in monitoring well GZ-2L. The historical presence of 1,4-dioxane in monitoring wells (GZ-104, GZ-202A, and RFW-4) indicates the presence of a landfill source. While background and/or other sources may be present for other Landfill contaminants including metals, chloride, and nitrate, no potential sources of 1,4-dioxane, other than the Landfill, have been identified.

GZA anticipates that the presence of the seep and apparent direction of Landfill-related contaminant transport may be due to variations in hydraulic conductivity within the subsurface between the Landfill and the seep. **Figure 3** illustrates a hydrogeologic cross section from the Landfill to the seep. The location of the cross section is illustrated on **Figure 1**.

SUMMARY OF RECENT LANDFILL WATER QUALITY MONITORING RESULTS

Overall calendar year 2017 groundwater quality data are generally consistent with historical Landfill water quality monitoring, indicating that groundwater quality improved or has remained relatively stable following closure of the Landfill during 1994. Recent and historical monitoring indicates limited exceedances of NH AGQS and/or Secondary Maximum Concentration Limits (SMCLs),⁵ primarily for certain parameters typical of Landfill-related water quality (i.e., arsenic, iron, and manganese).

Landfill-related groundwater contaminants routinely detected in groundwater sampled from monitoring locations located downgradient of the Landfill include arsenic, barium, chloride, iron, manganese, and 1,4-dioxane. It is GZA's opinion, based on the date of closure of the Landfill, and distribution and concentrations of 1,4-dioxane, that the presence of 1,4-dioxane is the result of historical waste disposal and does not indicate a recent or ongoing release of 1,4-dioxane at the Landfill.

Certain other metals, inorganic parameters, and VOCs have been intermittently detected in groundwater sampled from monitoring points located downgradient of the Landfill, including cadmium, chromium, lead, mercury, selenium, and silver. Significantly, only arsenic, iron, and manganese are routinely detected in Landfill groundwater samples at concentrations exceeding NH AGQS (arsenic and manganese) or SMCLs (iron). Detected concentrations of the other water quality parameters have infrequently exceeded NH AGQS, SMCLs, or surface

⁵ SMCLs are aesthetic-based secondary maximum contaminant-level water quality standards used to regulate public water systems (Env-Dw 706 [Regulated Secondary Maximum Contaminant Levels]).

water quality criteria. The following table summarizes post-closure (i.e., since September 1994) exceedances of applicable water quality standards for Landfill-related contaminants other than arsenic, manganese, iron, and VOCs, and has been revised through year 2017.

PARAMETER	LOCATION	CONCENTRATION (mg/L)	SAMPLING DATE	WATER QUALITY STANDARDS (mg/L)
	CW D 2/D 2D	0.007	4/99	
	SW-P-2/P-2R	0.0078	4/01	
	SW-1	0.0022	4/01	4.000 0.005
Cadmium	344-1	0.005	4/02	AGQS – 0.005 WQCTS – 0.00095
	RFW-2	0.01	4/03	WQC13 0.00033
	SW-13	0.010	11/10	
	GZ-1U	0.006	4/12	
Chromium	SW-1	0.26	4/06	AGQS – 0.10 WQCTS- NE
		0.18	4/97	
	SW-P-2/P-2R	0.041	11/15	1
		0.028	11/17	1,000, 0,045
Lead	RFW-2	0.053	7/96	AGQS – 0.015 WQCTS- NE
	RFW-3	18	4/98	WQCT3- NE
	SW-1	0.36	4/06	1
	SW-13	0.058	11/10	
Davissa	SW-1	1.9	11/01	WOCTC 1
Barium	SVV-1	2.3	4/06	WQCTS – 1
011 11	RFW-1	420	7/00	SMCL – 250
Chloride	GZ-6	460	7/01	AGQS –NE
Nitrate	RFW-4	19	11/96	AGQS – 10
	RFW-3	0.06	11/03	
	GZ-1U	0.0711	8/01	1
Selenium	GZ-1L	0.082	8/01	AGQS - 0.05
	GZ-2L	0.101	8/01	WQCTS- 0.170
	SW-1	0.13	4/06	
Mercury	SW-5	0.0012	7/96	WQCTS - 0.00005

Notes:

- 1. WQCTS indicates surface water quality criteria, protection of human health, water and fish ingestion standard shown.⁶
- 2. mg/L indicates milligrams per liter.
- 3. NE indicates not established.

During 2017, VOCs other than 1,4-dioxane were detected in groundwater quality samples collected from monitoring locations RFW-3 located northeast of the Landfill, P-9R located west of the Landfill, and SW-13 located to the northwest. VOCs detected in the November 2017 water quality samples collected from these locations included methyl-t-butyl-ether (MTBE) (1 μ g/L at RFW-3), p-Isopropyltoluene (66 μ g/L at P-9R), and acetone (10 μ g/L at SW-13). The detected concentrations of p-isopropyltoluene, MTBE, and acetone do not exceed the NH AGQS 260 μ g/L, 13 μ g/L, and 6,000 μ g/L respectively. GZA will review the results of future sampling rounds for the presence of these compounds.

⁶ As defined in New Hampshire Code of Administrative Rules Env-Ws 1703.21 (Water Quality Criteria for Toxic Substances, Protection of Human Health). Refer to **Table 1** for further information.

1,4-Dioxane has been historically detected in groundwater quality samples collected from RFW-2, RFW-3, RFW-4, SW-P2 (P-2R), SW-P-9 (P-9R), GZ-P-5R, GZ-102, GZ-104, GZ-106, GZ-202A, and SW-16 at concentrations up to 6 μ g/L. Most recently (November 2017) 1,4-dioxane was detected in water quality samples collected from P-2R, P-9R, RFW-3, RFW-4, GZ-104, GZ-202A, and SW-17. 1,4-Dioxane exceeds the NH AGQS of 3 μ g/L in the groundwater quality sample collected at RFW-4. The November 2017 sampling round was the first round during which 1,4-dioxane was detected in a sample collected from SW-17 (1.3 μ g/L; seep located east-northeast of the Landfill).

The results of the year 2017 Permit-related groundwater quality monitoring indicate exceedances of NH AGQS for arsenic (RFW-3, RFW-4, P-2R, P-9R, GZ-104, GZ-201, GZ-202A, SW-13, and SW-17) and for manganese (RFW-3, RFW-4, GZ-2L, GZ-104, GZ-201, GZ-202A, P-2R, P-9R, SW-13, and SW-17) in water quality samples collected during one or more of the sampling rounds. In addition, lead was detected at groundwater seep location P-2R at a concentration exceeding the applicable NH AGQS. The remaining target analytes were not detected in the water quality samples or were detected at concentrations less than their associated water quality standards (excluding SMCLs which are not directly applicable to the samples collected).

WATER QUALITY TREND EVALUATION

Time series charts of arsenic, iron, manganese, and chloride concentrations were prepared using data from selected water quality monitoring locations to illustrate concentration trends for graphical evaluation. Copies of these plots are attached and summarized below. Please note that where concentrations are reported as less than the laboratory reporting limits (RL), one half of the RL is shown.

SUMMARY

In general, the concentration of the Landfill-related contaminants in groundwater and surface water are relatively stable. However, the concentrations of the contaminants fluctuate to varying degrees at each of the monitoring locations. Fluctuations are likely due to variations in groundwater flow due to seasonal variations in infiltration. Monitoring locations exhibiting potential recent increasing or decreasing concentration trends for the primary Landfill-related groundwater contaminants include:

- Arsenic Increasing Trend Overburden wells GZ-104 and RFW-3, and piezometers P-2R and P-9R;
- Iron Increasing Trend Overburden wells GZ-104 and RFW-3, and piezometers P-2R and P-9R;
- Manganese Increasing Trend Overburden wells RFW-3 and GZ-104, and piezometer P-2R;
- Chloride Decreasing Trend Bedrock well GZ-2L, and surface water location SW-17; and
- Chloride Increasing Trend Piezeometer P-9R.

Increasing concentration trends were indicated for downgradient overburden wells GZ-104 and RFW-3 to the northeast, and downgradient monitoring locations P-2R and P-9R to the west and northwest, respectively. The significance of the increasing trends for P-9R should continue to be assessed based on the results of future monitoring, as should the apparent increasing arsenic, iron, and manganese, concentrations at overburden monitoring well GZ-104.

The sampling results indicate an AGQS violations in downgradient wells RFW-3 (manganese) and P-9R (manganese and arsenic). As discussed above, GZA recommends an on-going assessment of the observed concentration trends

in groundwater samples collected from P-9R due to variability in the results. Monitoring well GZ-106 is located downgradient of monitoring well RFW-3 and was last sampled in November 2014 for manganese. Results of the analysis of the sample collected during November 2014 indicated that the detected manganese concentration was less than the AGQS. GZA recommends including sampling of this well at least once during the next permit period.

As noted in the April 2017 Data Transmittal, the pH and specific conductance field measurements for the groundwater sample collected from monitoring well GZ-2L were above the previously measured ranges at that location. In addition, the iron and manganese concentrations were also above the historically measured concentrations at monitoring locations SW-17 and GZ-201. The reason for the abnormally high results is not known. The pH and specific conductance measurements collected during November 2017 from monitoring location GZ-2L were within the historical ranges. Excluding the manganese concentration in monitoring well GZ-201, the iron and manganese concentrations observed in samples collected during the November 2017 monitoring round appear to have decreased to within historical ranges. GZA will continue to monitor this condition in subsequent monitoring rounds.

DISSOLVED-PHASE CONTAMINANT TRANSPORT

Sampling locations RFW-2, and GZ-201 are located side gradient to downgradient of the Landfill, and exhibit relatively limited impacts to groundwater quality. Sampling locations RFW-3, RFW-4, P-2R, P-9R, GZ-102, GZ-104, GZ-202A, SW-16, and SW-17 are located downgradient of the Landfill, and generally exhibit greater impacts to groundwater quality.

The results of recent sampling at monitoring well locations GZ-202A, GZ-104, and SW-17 suggest a potential Landfill source for the groundwater contaminants detected in groundwater and surface water samples collected in the seep area. The data collected to date suggest the presence of a potential groundwater flow pathway from the eastern side of the Landfill east-northeastward toward the seep.

On August 10, 2016, GZA personnel visited the area surrounding the groundwater seep to evaluate the condition of the riverbed of the Exeter River relative to the potential for the collection of pore water samples. Due to observed site conditions and as requested by NHDES, GZA installed a temporary weir in the observed seepage/stream near SW-14 to collect total and dissolved metals samples monthly. The results and recommendations of this study are included in the attached letter prepared by GZA⁷.

CONCLUSIONS/DISCUSSION

The following summarize our primary findings regarding the Landfill water quality monitoring.

- Groundwater quality data for the current reporting period are generally consistent with the previously
 described concentration ranges and temporal trends for the water quality parameters monitored in
 accordance with the Permit for the Landfill;
- Recent water quality monitoring to the northeast of the Landfill in the general area of the seep indicates
 possible increasing contaminant concentrations (arsenic, iron, and manganese); however, concentrations

⁷ Summary Letter Report, prepared by GZA dated January 31, 2018.

detected during 2015 at monitoring location SW-16, outside the boundary of the Groundwater Management Zone (GMZ), did not exceed the AGQS;

- Additional potential Landfill-related contaminants including: chloride, iron, nitrate, 1,4-dioxane, and TKN were
 detected in one or more of the water quality samples collected during the reporting period. The
 concentrations of these parameters were below the NH AGQS or WQCTS during the reporting period except
 for 1,4-dioxine at RFW-3; and
- Calculated groundwater elevations for wells sampled during November 2017 are consistent with radial groundwater flow from the Landfill toward the northwest, north, northeast, and east of the Landfill within the shallow overburden outwash deposits underlying the area.

RECOMMENDATIONS

GZA recommends the following:

- Continued groundwater and surface water quality monitoring during 2018 as outlined in the current Permit.
 Recommendations for permit modifications, if deemed warranted, will be included in the permit renewal application due to the NHDES during December 2018;
- Continued evaluation of the increasing concentration trends for P-9R and GZ-104 based on the results of future monitoring;
- Further evaluation of the potential effects of the seep discharge on surface water quality within the Exeter River including: stream gauging of the Exeter River at the location of the seep discharge during spring and late summer; sampling of surface water in the Exeter River immediately up and downstream of the confluence with the seep concurrent with the stream gauging; and comparison of the results to flow and water quality data at the Town's water supply intake. This recommendation is based on the results of the recent weir sampling and is summarized in the attached letter referenced above.
- Metals sampling of downgradient monitoring well GZ-106 during the next five year permitting period.
- Collection of surface water samples from the Exeter River (SW-15) downstream of the confluence of the river and groundwater seep discharge for 1,4-dioxane;
- Field analysis of groundwater samples collected during the GMP sampling rounds for dissolved oxygen and
 oxidation-reduction potential to provide data for evaluation of the geochemical conditions beneath the Landfill
 relative to the increase in the mobilization of metals suggested by increasing arsenic, iron, and manganese
 concentration trends in groundwater samples collected from wells GZ-104 and RFW-3, and piezometers P-2R
 and P-9R; and
- Due to the intermittent presence of groundwater within well GMW-11, GZA recommends installation of an
 overburden groundwater monitoring well at the approximate location of well GMW-11, to provide a
 background overburden monitoring location that consistently contains groundwater. GZA recommends
 continued sampling of GMW-11 until installation of the recommended well can occur as allowed by the Town
 budgeting process.

January 31, 2018 Annual Summary Report Calendar Year 2017 Project No. 04.0021270.29 Page | 11

On behalf of the Town, we greatly appreciate your review of this report and trust the information contained herein and attached meet the needs of the NHDES. Should you have any questions, please contact the undersigned at (603) 232-8740.

Very truly yours,

GZA GEOENVIRONMENTAL, INC.

anna M Trut

Dawna M. Tousignant, P.E.

Project Manager

James M. Wieck, P.G. Consultant/Reviewer

Jeffrey D. Bowell, P.E. Associate Principal

DMT/JDR/JMW:kr

Attachments: Limitations

Tables Figures Plots

November 2017 Analytical Laboratory Data

Summary Letter Report

cc: Ms. Jennifer Mates, P.E., Department of Public Works; Town of Exeter

Limitations

April 2012

USE OF REPORT

1. GZA GeoEnvironmental, Inc. (GZA) prepared this report on behalf of, and for the exclusive use of our Client for the stated purpose(s) and location(s) identified in the Proposal for Services and/or Report. Use of this report, in whole or in part, at other locations, or for other purposes, may lead to inappropriate conclusions; and we do not accept any responsibility for the consequences of such use(s). Further, reliance by any party not expressly identified in the agreement, for any use, without our prior written permission, shall be at that party's sole risk, and without any liability to GZA.

STANDARD OF CARE

- GZA's findings and conclusions are based on the work conducted as part of the Scope of Services set forth in the Proposal
 for Services and/or Report and reflect our professional judgment. These findings and conclusions must be considered not
 as scientific or engineering certainties, but rather as our professional opinions concerning the limited data gathered during
 the course of our work. Conditions other than described in this report may be found at the subject location(s).
- 3. GZA's services were performed using the degree of skill and care ordinarily exercised by qualified professionals performing the same type of services, at the same time, under similar conditions, at the same or a similar property. No warranty, expressed or implied, is made. Specifically, GZA does not and cannot represent that the Site contains no hazardous material, oil, or other latent condition beyond that observed by GZA during its study. Additionally, GZA makes no warranty that any response action or recommended action will achieve all of its objectives or that the findings of this study will be upheld by a local, state or federal agency.
- 4. In conducting our work, GZA relied upon certain information made available by public agencies, Client and/or others. GZA did not attempt to independently verify the accuracy or completeness of that information. Inconsistencies in this information which we have noted, if any, are discussed in the Report.

SUBSURFACE CONDITIONS

- 5. The generalized soil profile(s) provided in our Report are based on widely-spaced subsurface explorations and are intended only to convey trends in subsurface conditions. The boundaries between strata are approximate and idealized, and were based on our assessment of subsurface conditions. The composition of strata, and the transitions between strata, may be more variable and more complex than indicated. For more specific information on soil conditions at a specific location refer to the exploration logs. The nature and extent of variations between these explorations may not become evident until further exploration or construction. If variations or other latent conditions then become evident, it will be necessary to reevaluate the conclusions and recommendations of this report.
- 6. Water level readings have been made, as described in this Report, in and monitoring wells at the specified times and under the stated conditions. These data have been reviewed and interpretations have been made in this report. Fluctuations in the level of the groundwater however occur due to temporal or spatial variations in areal recharge rates, soil heterogeneities, the presence of subsurface utilities, and/or natural or artificially induced perturbations. The observed water table may be other than indicated in the Report.

COMPLIANCE WITH CODES AND REGULATIONS

7. We used reasonable care in identifying and interpreting applicable codes and regulations necessary to execute our scope of work. These codes and regulations are subject to various, and possibly contradictory, interpretations. Interpretations and compliance with codes and regulations by other parties is beyond our control.

SCREENING AND ANALYTICAL TESTING

- 8. GZA collected environmental samples at the locations identified in the Report. These samples were analyzed for the specific parameters identified in the report. Additional constituents, for which analyses were not conducted, may be present in soil, groundwater, surface water, sediment and/or air. Future Site activities and uses may result in a requirement for additional testing.
- 9. Our interpretation of field screening and laboratory data is presented in the Report. Unless otherwise noted, we relied upon the laboratory's QA/QC program to validate these data.
- 10. Variations in the types and concentrations of contaminants observed at a given location or time may occur due to release mechanisms, disposal practices, changes in flow paths, and/or the influence of various physical, chemical, biological or radiological processes. Subsequently observed concentrations may be other than indicated in the Report.

INTERPRETATION OF DATA

11. Our opinions are based on available information as described in the Report, and on our professional judgment. Additional observations made over time, and/or space, may not support the opinions provided in the Report.

ADDITIONAL INFORMATION

12. In the event that the Client or others authorized to use this report obtain additional information on environmental or hazardous waste issues at the Site not contained in this report, such information shall be brought to GZA's attention forthwith. GZA will evaluate such information and, on the basis of this evaluation, may modify the conclusions stated in this report.

ADDITIONAL SERVICES

13. GZA recommends that we be retained to provide services during any future investigations, design, implementation activities, construction, and/or property development/ redevelopment at the Site. This will allow us the opportunity to: i) observe conditions and compliance with our design concepts and opinions; ii) allow for changes in the event that conditions are other than anticipated; iii) provide modifications to our design; and iv) assess the consequences of changes in technologies and/or regulations.

CONCEPTUAL SITE MODEL

14. Our opinions were developed, in part, based upon a comparison of site data to conditions anticipated within our Conceptual Site Model (CSM). The CSM is based on available information, and professional judgment. There are rarely sufficient data to develop a unique CSM. Therefore observations over time, and/or space, may vary from those depicted in the CSM provided in this report. In addition, the CSM should be evaluated and refined (as appropriate) whenever significant new information and/or data is obtained.

Tables

Arsenic (mg/L)

NH AGQS = 0.01 mg/L WQCTS (Water and Fish Ingestion) = 0.000018 mg/L

								Overb Monitor	ourden ring Wells								N	Be Monitoring and	drock Residential W	/ells		Groundwater Seep Monitoring Stations						Surface Water onitoring Stati					Leachate Monitoring Well
Sampling Date	RFW-1	RFW-2	RFW-3	RFW-4	GZ-1U	GZ-2	GZ-3	GZ-4	GZ-5	GZ-6	GZWP-1	GZ-102	GZ-104	GZ-106	GZ-201	GZ-202A	GZ-1L	GZ-2L	GZ-3L	Giancola Residence	SW-P-2 (P-2/1P-2R Southern Spring)	GZ-P-5R	SW-P-9 (P-9/1P-9R Northern Spring)	SW-1	SW-5	SW-10	SW-11	SW-12	SW-13	SW-16	SW-17	Exeter River	MW-6
5/27/1992	0.02	0.04	0.02	0.25			-				-		-	-			-		-	-	-		<0.01	-		-	-	-	-		-	-	0.04
11/12/1992	<0.01	<0.01	<0.01	0.0284	<u> </u>		-	-	-	-	-		-		-	-	-	-	-	-	-		-	-	<0.01	-	-	-	-		-		
4/6/1993 7/1/1993	0.001	0.17	0.025	0.16 0.001	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.001	-	-	-	-		-	H	0.03
11/5/1993	0.001	0.002	0.002	0.015	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-		-	-	0.007	-	-	-	-		-	-	0.048
4/14/1994	<0.005 <0.100	0.06 <0.100	0.058 <0.100	0.263 0.245	-	-	-		-	-	-	-			-	-	-	-	-	-	-		-	-	0.034 <0.100		-	-	-		-	-	<u> </u>
7/15/1994 8/30/1994	-		-	- 0.245	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-		0.057
9/6/1994	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-		-	-	0.002
10/11/1994	0.001	0.059	0.038	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	•	-	-	0.013	-	-	-	-		-		0.001
12/23/1994	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	0.05
2/2/1995 4/12/1995	<0.005	0.039	0.022	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	<0.005	-	-	-	-		-	-	0.005 <0.005
7/28/1995	<0.005	0.039	0.022	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	<0.005	-	-	-	-		-		0.018
12/8/1995	<0.01	<0.01	0.042	0.22		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.027	-	-	-	-		-	- 1	0.099
4/26/1996 7/25/1996	<0.01	<0.01 <0.005	0.01 <0.005	0.02	H :-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.01 0.04	-	-	-	-		-	-	<0.01
11/14/1996	-	0.015	0.17	0.13		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.005	-	0.017	<0.005	-	-	-	-	-		-	-	-
4/21/1997 7/22/1997	<0.005	<0.005 <0.005	0.024	0.14	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.005 0.005	-	0.012	0.008 <0.005	-	-	-	-	-		-	-	-
11/11/1997	<0.005	0.011	0.04	<0.05		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.005	-	0.15	0.008	-	-	-	-	-		-	-	-
4/15/1998	<0.5	<0.5	<0.5	<0.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.14	-		<0.005	-	-	-	-	-		-	-	-
7/6/1998	<0.005	<0.005 0.012	0.021	0.15	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.75 <0.005		4.9 0.58	<0.005 <0.005	-	-	-	-	-		-		-
4/19/1999	<0.005	<0.005	0.037	0.15		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.005	-	0.66	<0.005	-	-	-	-	-		-	-	-
7/27/1999 11/18/1999	<0.005 0.01	<0.005 0.018	0.026	0.18	<u> </u>		-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.005 0.12	-	12 5.9	0.009 1.2	-	-	-	-	-	-	-	-	-
5/5/2000	<0.005	<0.005	0.054	0.14		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.005	-	-	-	-	-	-	-	-	
7/7/2000	<0.005	0.008	0.46	0.2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.009		0.71	0.008	-	-	-	-	-	-	-	-	
11/16/2000 4/25/2001	<0.01	<0.01 0.014	0.13	0.2	H :	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.023	-	0.013	0.3	-	-	-	-	-	-	-		
7/25/2001	<0.005	0.009	0.22	0.19	0.0124	-	-	<0.004	0.0102	0.0062	-	-	-	-	-	-	<0.004	<0.004	<0.004	-	0.015		27	0.03	-	-	-	-	-	-	-	-	
8/9/2001 11/28/2001	<0.01	<0.01	0.09	0.1	<0.004	-	-	-	-	-	-	-	-	-	-	-	0.008	0.006	<0.004	-	<0.01	-	-	1.9	-	-	-	-	-	-	-		-
1/17/2002	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.026	-	<0.026	<0.026	<0.026	-	-	-	-	-
4/24/2002 11/20/2002	<0.02 <0.05	<0.02 <0.05	0.22	0.22 0.25		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	<0.02 <0.05	-	<0.02 <0.01	<0.02 <0.01	<0.02 <0.01	-	-	-	-	<u> </u>
4/29/2003	<0.05	<0.05	0.24	0.25	<0.01	-	-	-	-	-	-	-	-	-	-	-	<0.01	<0.01	<0.01	-	<0.01	-	<0.01	<0.05	-	<0.01	<0.01	<0.01	-	-	-	-	-
11/17/2003	-	0.014	0.22	0.18	<0.005	-	-	-	-	-	-	-	-	-	-	-	<0.005	0.011	<0.005	-	-	-	0.12	<0.005	-	<0.005	<0.005	<0.005	-	-	-	-	-
4/28/2004 11/15/2004	-	0.01	0.20	0.22	<0.005 <0.005	-	-	-	-	-	0.01	-	-	-	-	-	<0.005 <0.005	0.005	<0.005 <0.005	<0.005	<0.005 0.41	0.005 <0.005	0.043	<0.005 <0.005	-	-	-	-	-	-	-	-	
4/28/2005	-	<0.01	0.07	0.2	<0.01	-	-	-	-	-	0.03	-	-	-	-	-	<0.01	<0.01	<0.01	-	0.12	<0.01	0.03	<0.01	-	<0.01	<0.01	<0.01	-	-	-	-	
11/8/2005 4/17/2006	-	0.006 <0.005	0.023	0.156 0.16	<0.005	-	-	-	-	-	0.058	-	-	-	-	-	<0.005 <0.005	0.013	<0.005 <0.005	-	0.149 0.034	<0.005 <0.005	0.017	0.008	-	<0.005 <0.01	<0.005 <0.01	<0.005 <0.01	-	-	-	-	-
11/20/2006	-	0.007	0.011	0.14	<0.005						0.062	-	-				<0.005	0.007	<0.005	-	0.026	<0.005	0.042	<0.005		<0.005	<0.005	<0.005	-				
5/2/2007	-	0.012	0.006	0.13	<0.005	-	-	-	-	-	0.029	-	- 0.097	-	-	-	-0.005	0.006	- 0.007	-	0.011	<0.005	0.011	0.029	-	<0.005	<0.005	<0.005	-	-	-	<0.005	
11/14/2007 4/25/2008	-	<0.005 0.007	0.006	0.13 0.17	<0.005 <0.005	-	-	-	-	-	0.032 0.040	-	0.087	-	-	-	<0.005	<0.005 <0.005	0.007	-	0.024 0.016	0.007 <0.005	0.036 0.024	<0.005 <0.01	-	<0.005	<0.005	<0.005	<0.01	-	-	<0.005 <0.01	
11/18/2008	-	0.005	0.009	0.16	0.006	-	-	-	-	-	Dry	-	0.008	-	-	-	0.005	<0.005	-	-	Dry	0.008	0.025	<0.005		-	-	-	0.010		-	<0.002	
4/27/2009 11/4/2009	-	0.002	0.004	0.13	0.001 <0.001	-	-	-	-	-	0.026 Dry	-	0.009	-	-	-	0.002	0.001	<0.001	-	0.024	0.003	0.023	0.009	-	-	-	-	0.002	 	0.001 0.056	<0.001 <0.001	-
4/20/2010	-	0.004	0.002	0.16	0.001	-	-	-	-	-	-	-	<0.001	-	-	-	-	<0.001	-	-	0.017	0.002	0.008	-	-	-	-	-	0.007		0.009	<0.001	-
11/11/2010 4/22/2011	-	0.007	0.002	0.13 0.12	0.001	-	-	-	-	-	-	-	0.003 0.002	-	-	-	0.003	0.001 < 0.001	0.002	-	0.022 0.014	0.003 0.002	0.042 0.032		-	-	-	-	0.002 <0.001	-	0.007	<0.001 <0.001	-
11/14/2011	-	0.003	0.002	0.12	0.001		-			-	-	-	0.002	-	-	-	0.002	<0.001	0.002	-	0.014	0.002	0.032		-	-	-		0.001		0.009	<0.001	-
4/30/2012	-	0.003	0.012	0.13	0.002	-	-	-		-	-	-	0.075	-	-			<0.001	-	-	0.030	0.003	0.024	-	-	-	-	-	0.002		0.001	<0.001	-
11/5/2012 5/7/2013	-	<0.001	0.002	0.12	<0.001	-	-	-	-	-	-	0.001	0.020	-	<0.001	0.41	0.003	<0.001	-	-	0.014	0.001	0.12	-	-	-	-	-	0.021	-	0.018	<0.001	-
12/19/2013	-	0.014	0.013	0.12	0.001	-	-	-	-	-	-	<0.001	0.13	-	0.004	0.28	0.003	0.006	0.003	-	0.016		0.048	-		-	-	-	-	0.053	0.007	-	-
4/15/2014 11/3/2014	-	0.019 0.012	0.010 0.005	0.14 0.014	<0.001	-	-	-	-	-	-	<0.001	0.031	<0.001 <0.001	0.002	0.31 0.27	0.002 0.004	0.007	0.004	-	-	-	0.037 0.15	•	-	-	-	-	-	0.058 < 0.001	0.032 0.059	<u> </u>	-
4/6/2015	-	0.012	0.005	0.014			-	-	-		-	- 0.001	0.033		0.003	0.27	0.004	0.004	0.004	-	-	-	0.15		-	-	-	-		<0.001	0.059		-
11/17/2015	-	0.007	0.280	0.14	·	-	-	-	-	-	-	-	0.30	-	0.001	0.17	0.004	0.002	0.003	-	0.073	-	0.092	-	-	-	-	-	<0.001	-	0.004	<u> </u>	-
4/14/2016 11/2/2016	-	0.001	0.006	0.20		-	-	-	-	-	-	-	0.060 0.160	-	0.005 <0.001	0.17 0.15	0.004	0.003	0.006	-	-	-	0.026 0.055				-	-	-	-	0.011	-	-
4/24/2017	-	0.007	0.024	0.14							-		0.097		0.19	0.002	0.003	0.003	0.006	-	-		0.022				-	-	-		0.093		
11/7/2017	-	<0.001	0.038	0.13	-	-	-	-	-	-	-		0.160	-	0.009	0.14	0.003	0.004	0.007	-	0.053	-	0.23	-	-	-	-	-	0.027		0.004	-	-

See last page for notes.

PyUpi8s/21000/s/1270/U4 0202170 2/9/Report/2017 Annual Report/Cross Road Table 1 Julis

Barium (mg/L)

NH AGQS= 2 mg/L WQCTS (Water and Fish Ingestion) = 1.0 mg/L

									burden										drock			Groundwater Seep						Surface Water			,		Leachate
Sampling Date	RFW-1	RFW-2	RFW-3	RFW-4	GZ-1U	GZ-2	GZ-3	Monitor GZ-4	GZ-5	GZ-6	GZWP-1	GZ-102	GZ-104	GZ-106	GZ-201	GZ-202A	GZ-1L	Monitor GZ-2L	GZ-3L	Giancola Residence	SW-P-2 (P-2/1P-2R	Monitoring Stations GZ-P-5R	SW-P-9 (P-9/1P-9R	SW-1	SW-5	SW-10	SW-11	nitoring Station	SW-13	SW-16	SW-17	Exeter River	Monitoring Well MW-6
5/27/1992	<0.1	0.2	0.1	0.4	-	-	-	-	-		-	-	-	-		-	-		-		Southern Spring)	-	Northern Spring)		-	-		-		-	-		0.2
11/12/1992 4/6/1993	<0.1	1.2	<0.1	1.1	-	-	-	-	-			-		-	-		-			-	-	-	-	-	8	-			-				0.7
#/6/1993 # 7/1/1993		-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
11/5/1993	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
4/14/1994 7/15/1994	0.015	0.034	0.105	0.256	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.043	-	-	-	-	-	-	-	-
8/30/1994	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	1.8
9/6/1994	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	-	-	-	-	-	-	-	-	-	2.3
11/18/1994	<0.1	<0.1	<0.1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.1	-	-	-	-	-		-	-
12/23/1994 2/2/1995	-	-	-	-		-	-	-	-		-	-	-	-	-	-	-		-	-		-	-	-	-	-	-	-		-		-	1.2
4/12/1995	<0.1	<0.1	<0.1	-	-	-	-	-	-		-	-	-	-	-	-	-		-	-	-	-	-	-	<0.1	-	-	-	-	-	-	-	0.6
7/28/1995				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- 0.027	-	-	-	-	-	-	-	
12/8/1995 4/26/1996	<0.4	<0.4	<0.4	0.56 <0.4	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.027	-	-	-	-	-	-	-	<0.5 0.7
7/25/1996	0.025	0.036	0.1	0.21	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.1	-	-	-	-	-	-	-	-
11/14/1996 4/21/1997	-	0.046	0.13	0.23	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.009	-	0.024	0.008	-	-	-	-	-	-	-	-	-
7/22/1997	-	-		-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
11/11/1997 4/15/1998	0.006	0.016	0.094	0.14	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		0.42	-	-	0.01	-	-	-	-	-	-	-	-	-
7/6/1998	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-
11/16/1998	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-		-	-	-	-	-	-	-
4/19/1999 7/27/1999	0.007	0.013	0.11	0.14	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.011		0.064	0.071	-	-	-	-	-	-	-	-	-
11/18/1999	-	-		-	-	-	-	-	-		-	-	-	-	-	-	-		-	-	-	-	-	-	-	-		-	-	-	-	-	-
5/5/2000 7/7/2000	0.014	0.013	0.096	0.14	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-			-	0.009	-	-	-	-	-	-	-	-	-
11/16/2000	-	-	-	-		-	-	-	-			-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-
4/25/2001	0.01	0.016	0.081	0.15	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.11	-	0.027	0.023	-	-	-	-	-	-	-	-	-
7/25/2001 8/9/2001	-	-	-	-	0.0418	-	-	-	-		-	-	-	-	-	-	0.061	0.11	0.012	-		-	-	-	-	-	-	-	-	-	-	-	-
11/28/2001	<0.01	<0.01	0.09	0.1	-	-	-	-	-		-	-	-	-	-	-	-		-	-	<0.01	-	-	1.9	-	-		-	-	-	-	-	-
1/17/2002 4/24/2002	<0.03	<0.03	0.12	0.14	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	<0.03	-	-	-	-	-	-	-	-	-
11/20/2002	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-
4/29/2003 11/17/2003	<0.005	<0.005 <0.005	0.12	0.15 0.12	<0.05 <0.05	-	-	-	-	-	-	-	-	-	-	-	<0.05 <0.05	0.12	<0.05 <0.05	-	<0.05	-	<0.05 <0.05	<0.05 <0.05	-	-	-	-	-	-	-	-	-
4/28/2004	-	<0.05	0.09	0.17	<0.05	-	-	-	-	-	<0.05	-	-	-	-	-	<0.05	<0.05	<0.05	<0.05	<0.05	0.05	<0.05	<0.05	-	-	-	-	-	-	-	-	-
11/15/2004 4/28/2005	-	<0.05	- 0.14	- 0.13		-	-	-	-	-	0.06	-	-	-	-	-	<0.05	0.1	<0.05	-	<0.05	<0.05	<0.05	- <0.05	-	-	-	-	-	-	-	-	-
11/8/2005	-	<0.05	0.14	0.13 0.17	<0.05 <0.05	-	-	-	-		0.06	-	-	-	-	-	<0.05	0.09	<0.05	-	<0.05	<0.05	<0.05	<0.05	-	-	-	-	-	-	-	-	-
4/17/2006	-	<0.05	0.10	0.15	<0.05	-	-	-	-	-	0.05	-	-	-	-	-	<0.05	0.08	<0.05	-	<0.05	<0.05	<0.05	2.3	-	-	-	-	-	-	-	-	-
11/20/2006 5/2/2007	-	<0.05 <0.05	0.09	0.11	0.06 <0.05	-	-	-	-	-	0.05 0.06	-	-	-	-	-	<0.05	<0.05 0.06	<0.05	-	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	-	-	-	-	-	-	-	<0.05	-
11/14/2007	-	<0.05	0.13	0.12	<0.05	-	-	-	-	-	0.06	-	0.052	-	-	-	<0.05	<0.05	<0.05	-	<0.05	<0.05	<0.05	<0.05	-	-	-	-	-	-	-	<0.05	-
4/25/2008 11/18/2008	-	<0.05	0.12	0.17	<0.05	-	-	-	-	-	- Dry	-	0.014	-	-	-	<0.05	<0.05	-	-	- Dry	<0.05	<0.05	-	-	-	-	-	<0.05	-	-	<0.05	-
11/4/2009	-	0.027	0.11	0.16	0.015	-	-	-	-	-	-	-	0.019	-	-	-	0.022	0.038	0.007	-	0.010	0.005	0.017	-	-	-	-	-	0.011	-	0.15	0.011	-
4/20/2010 11/11/2010	-	0.022	0.077	0.13	0.019	-	-	-	-	-	-	-	0.025	-	-	-	0.020	0.027	0.008		0.011	0.005	0.028		-	-	-	-	0.018		0.039	0.017	-
4/22/2011		-	-	-	0.019	-						-	-	-	-	-	-	-		-	- 0.011	-	-	-	-	-	-	-	0.018	-	0.039	-	-
11/14/2011	-	0.023	0.069	0.11	0.027	-	-	-	-	-	-	-	0.021	-	-	-	0.019	0.025	0.006	-	0.020	0.006	0.025	-	-	-	-	-	0.007	-	0.031	0.011	-
4/30/2012 11/5/2012	-	0.024 0.030	0.068	0.13 0.12	0.022 0.021	-	-	-	-	-	-	-	0.035 0.034	-	0.075	0.080	0.020	0.018 0.026	-		0.009 0.013	0.005 0.005	0.011 0.027	-	-	-	-	-	0.008	-	0.032 0.075	0.010 0.014	-
5/7/2013	-	-	-	-	-	-	-	-	-	-	-	0.030	0.039	-	0.043	0.093	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
12/19/2013 4/15/2014	-	0.018	0.093	0.080	0.026	-	-	-	-	-	-	0.019	0.029	0.005	0.077	0.065	0.019	0.048	0.012	-	0.058	-	0.016	-	-	-	-	-	-	0.021	0.035	-	-
11/3/2014	-	-	-	-	-	-	-	-	-	-	-	0.010	-	0.031	-	-	-	-	-		-	-	-	-	-	-	-	-		0.026		-	-
4/6/2015 11/17/2015	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.27	-	-	-	-	-	-	-	0.011	-	-	-	-
4/14/2016	-	-				-				-	-	-	-	-	-	-	-	-		-	-	-	-		-	-	-	-	-	-	-	-	-
11/2/2016	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
4/24/2017 11/7/20117	-	0.024	0.065	0.15	-	-	-	-	-	-	-	-	0.041	-	0.23	0.069	0.028	0.064	0.055		0.49	-	0.082	-	-	-	-	-	0.033	-	0.022	-	-
See last page for n					-	•		1	1			•																					

Cadmium (mg/L)

 $\label{eq:NHAGQS} NH\ AGQS = 0.005\ mg/L$ $WQCTS\ (Protection\ of\ Aquatic\ Life\ -\ Fresh\ Water\ Acute)\ = 0.21\ ug/L$

									burden										irock			Groundwater Seep						Surface Wate					Leacha
mpling								Monito	ring Wells							l		Monitor	ring Wells			Monitoring Stations					Mo	onitoring Stat	tions				Monitorin
Date	RFW-1	RFW-2	RFW-3	RFW-4	GZ-1U	GZ-2	GZ-3	GZ-4	GZ-5	GZ-6	GZWP-1	GZ-102	GZ-104	GZ-106	GZ-201	GZ-202A	GZ-1L	GZ-2L	GZ-3L	Giancola Residence	SW-P-2 (P-2/1P-2R Southern Spring)	GW-P-5R	SW-P-9 (P-9/1P-9R Northern Spring)	SW-1	SW-5	SW-10	SW-11	SW-12	SW-13	SW-16	SW-17	Exeter River	MW-
27/1992	<0.005	0.007	<0.005	0.007		-			-	-	-	-		-	-	-			-	-	-	-	<0.005	-		-	-	-	-	-	-		<0.0
12/1992	<0.01	<0.01	<0.01 <0.005	<0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.01 <0.005	-	-	-	-	-	-		<0.
1/1993	<0.05	<0.05	<0.005	<0.005	-					-	-		-	-	-		-	-	-	-	-	-	-	-	<0.005	-	-	-	-	-	-	-	<0
5/1993	0.02	0.02	0.02	0.02		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.01	-	-	-	-	-	-	-	(
4/1994	0.015	<0.01	<0.01	0.029		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.016	-	-	-	-	-	-		
/1994	<0.01	<0.01	0.017	0.028		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.01	-	-	-	-	-	-	<u> </u>	_
)/1994 /1994	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
1/1994	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		(
B/1994	<0.005	<0.005	<0.005	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.005	-	-	-	-	-	-		
3/1994	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<u> </u>	<
/1995 2/1995	<0.005	<0.005	<0.005	-	+ -	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-		-	<0.005	-	-	-	-	-	-	\vdash	<
3/1995	<0.05	<0.05	<0.05	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.05	-	-	-	-	-	-	- 1	
3/1995	<0.004	<0.004	<0.004	<0.004	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.004	-	-	-	-	-	-	_	<
/1996	<0.005	<0.005	<0.005	<0.005	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.005	-	-	-	-	-	-	 '	
/1996 4/1996	<0.002	<0.002	<0.002	<0.002	-	-	+ -	-	+ -	-	-	-	-	-	-		-	-	-	-	-	-	-	-	<0.002	-	-		-	-	-		\vdash
/1997	-	<0.001	<0.001	<0.001	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.001	-	<0.001	<0.001	-	-	-	-	-	-	-		
/1997	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
1/1997 /1998	<0.001	<0.001	<0.001	<0.001	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.001	-	-	<0.001	-	-	-	-	-	-	-	 '	-
/1998	- 0.001	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	$\overline{}$	
5/1998		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
/1999	<0.001	<0.001	0.002	<0.001	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.007	-	0.012	<0.001	-	-	-	-	-	-	-	<u> </u>	-
/1999 8/1999	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
/2000	<0.001	<0.001	0.002	0.001	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.001	-	-	-	-	-	-	-	\vdash	1
/2000	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
6/2000	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	<u> </u>	
5/2001	<0.001	<0.001	<0.001	0.0016	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	0.0078		0.0042	0.0022	-	-	-	-	-	-	-		-
/2001		-	-	-	<0.004	-	-	-	-	-	-	-	-	-	-	-	<0.004	<0.004	<0.004	-	-	-	-		-	-	-	-	-	-	-	- 1	
8/2001		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
7/2002 1/2002	<0.005	<0.005	<0.005	<0.005	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.005	-	-	-	-	-	-	-	 '	-
0/2002	-	-	-	-	-			-		-	-		-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	一	_
9/2003	<0.005	0.01	<0.005	<0.005	<0.005	-	-	-	-	-	-	-	-	-	-	-	<0.005	<0.005	<0.005	-	<0.005	-	<0.005	<0.005	-	-	-	-	-	-	-	-	
7/2003	-	<0.005	<0.005	<0.005	<0.005	-	-	-	-	-	-	-	-	-	-	-	<0.005	<0.005	<0.005	-	-	-	<0.005	<0.005	-	-	-	-	-	-	-		
3/2004 5/2004	-	<0.005	<0.005	<0.005	<0.005	-	-	-	-	-	<0.005	-	-	-	-	-	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	-	-	-	-	-	-	-		-
/2005		<0.005	<0.005	<0.005	<0.005	-	-	-	-	-	<0.005	-	-	-	-	-	<0.005	<0.005	<0.005	-	<0.005	<0.005	<0.005	<0.005	-	-	-	-	-	-	-	\vdash	1
3/2005	-	<0.005	<0.005	<0.005	<0.005	-	-	-	-	-	<0.005	-	-	-	-	-	<0.005	<0.005	<0.005	-	<0.005	<0.005	<0.005	<0.005	-	-	-	-	-	-	-		
7/2006	-	<0.005	<0.005	<0.005	<0.005	-	-	-	-	-	<0.005	-	-	-	-	-	<0.005	<0.005	<0.005	-	<0.005	<0.005	<0.005	<0.005	-	-	-	-	-	-	-	<u> </u>	<u> </u>
0/2006 /2007	-	<0.005 <0.005	<0.005 <0.005	<0.005 <0.005	<0.005 <0.005		-	-	-		<0.005 <0.005	-	-	-	-	-	<0.005	<0.005 <0.005	<0.005	-	<0.005 <0.005	<0.005 <0.005	<0.005 <0.005	<0.005 <0.005	-	-	-	-		-	-	<0.005	\vdash
1/2007	-	<0.005	<0.005	<0.005	<0.005			-		<u> </u>	<0.005	_			-		<0.005	<0.005	<0.005	-	<0.005	<0.005	<0.005	<0.005							-	<0.005	
/2008	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-		
8/2008 1/2009	-	<0.005 <0.001	<0.005 <0.001	<0.005 <0.001	<0.005 <0.001	-	-	-	-	-	Dry	-	<0.005 <0.001	-	-	-	<0.005 <0.001	<0.005 <0.001	<0.001	-	Dry <0.001	<0.005 <0.001	<0.005 <0.001	-	-	-	-	-	<0.005 <0.001	-	<0.001	<0.005 <0.001	
/2009	-	<0.001	- 0.001		- ~0.001				1 -	-	-		<0.001		-		- 0.001	- 0.001	- 0.001	-	- 0.001	- 0.001	<0.001			-	-		- 0.001	-	- 0.001	<0.001	
1/2010	-	<0.001	<0.001	<0.001	<0.001	-	-	-	-	-	-	-	<0.001	-	-	-	<0.001	<0.001	<0.001	-	<0.001	<0.001	<0.001	-	-	-	-	-	0.010		<0.001	<0.001	
/2011	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-			-	-	-	-	-	-	-	-		<u> </u>
4/2011 /2012	-	<0.001	<0.001	<0.001 <0.001	<0.001 0.006	-	+ -	+ :	-	-	-	-	<0.001	-	-		<0.001	<0.001 <0.001	<0.001	-	<0.001 <0.001	<0.001 <0.001	<0.001 <0.001	-	-	-	-	-	<0.001	-	<0.001 <0.001	<0.001 <0.001	₩
/2012	-	<0.001		<0.001	<0.001	-	-	<u> </u>	1 -		-		<0.001	-	<0.001	<0.001	<0.001	<0.001	-	-	<0.001	<0.001	<0.001	-		-	-		<0.001		<0.001	<0.001	\vdash
/2013	-		-	-	-	-	-	-	-	-	-	<0.001	<0.001	-	<0.001	<0.001	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
9/2013	-	<0.001	<0.001	<0.001	<0.001	-	-	-	-	-	-	<0.001	<0.001	-0.001	<0.001	<0.001	<0.001	<0.001	<0.001	-	<0.001	-	<0.001	-	-	-	-	-	-	<0.001	<0.001	<u> </u>	
/2014	-	-	-	-	-	-	-	-	-	-	-	<0.001	-	<0.001	-	-	-	-	-	-	-	-	-	-	-	-	-	-		<0.001	-		
/2014	_			-	-	-				-	-	-			-	-	-		-	-	-	-		-				<u> </u>	-	-	-	-	
7/2015	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.001	-	-	-		-	-	-	<0.001	-	-		
1/2016	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<u> </u>	<u> </u>
2/2016 1/2017	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
/2017	-	<0.001	<0.001	<0.001	+ :			+ -	+ -	-		-	<0.001		<0.001	<0.001	<0.001	<0.001	<0.001		<0.001	<u> </u>	<0.001				-		<0.001		<0.001		

Chloride (mg/L)

NH AGQS = NE SMCL = 250 mg/L WQTS (Protection of Aquatic Life - Fresh Water Acute) = 230 mg/L

Part										hurdon										drock			Groundwater Seep						Surface Water		- (er Acute) = 230 mg/L
Part	Samalia a																																	Monitoring Well
March Marc		RFW-1	RFW-2	RFW-3	RFW-4	GZ-1U	GZ-2	GZ-3	GZ-4	GZ-5	GZ-6	GZWP-1	GZ-102	GZ-104	GZ-106	GZ-201	GZ-202A	GZ-1L	GZ-2L	GZ-3L		(P-2/1P-2R	GW-P-5R	(P-9/1P-9R	SW-1	SW-5	SW-10	SW-11	SW-12	SW-13	SW-16	SW-17	Exeter River	MW-6
No. 10		-			+	-	-	-	-	-	-	-	-		-	-						-	-	48	-	-	-	-	-	-		-	-	900
The color						-	-	-		1	-	-	-	-	-	-						-	-	-	-		-		1			1	-	1,150
Note	щ					-	-	-	-	-	-	-	-	-	-	-						-	-	-	-		-		-			-	-	-
No. No.	9					-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-	-	-	-	700
Control Cont					+	-	-	-	-	-	-	-	-	-	-	-					-	-	-	-	-		-		-			-	-	-
Column C		- 5.24	- 49.7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	350
Company Comp	9/6/1994	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	950
Column C		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	450
Property Property		-		-	-	-	-	-	-	-	-	-	-	-		-	-	-	-		-	-		-	-	-	-	-	-	-		-	-	470
Column C	2/2/1995	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	500
March Marc		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-			-	-	-	-	-	-	-	-	-	-	-	-	-	490
March Marc		- 10	- 54	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- 54	-	-	-	-	-	-	-	510 1,200
March Marc		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	550
Column C		-				-	-	-	-	-	-	-	-	-	-	-							-		-	-	-	-	-	-	-	-	-	
Control Cont		-				-	-	-	-	-	-		-	-	-	-							-			-	-	-	-		•	-	-	-
Company Comp		17				_						_		_		-							-				-	-	_	-	-	_	-	-
No.						-	-	-	-	-	-	-	-	-	-	-	-		-		-		-	80		-	-	-	-	-	-	-	-	-
Column C	8	52			+	-	-	-	-	-	-	-	-	-	-	-							-	- 00		-	-	-	-	-	-	-	-	-
14 17 18 18 18 18 18 18 18			-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
VARINGE COLUMN	4/19/1999	28	50	140	7.6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	32	-	27	44	-	-	-	-	-	-	-	-	-
Column C		+				1	-	-	-	-	-	-	-	-	-	-							-			-	-	-	-	-	-	-	-	-
Marie Mari								-	1	ļ	-	-	-	-	-	-							-			-	-	-	-			-	-	-
Green					+	-	-	-	-	-	-	-	-	-	-	-	-		-		-	46	-	54		-	-	-	-	-	-	-	-	-
Mary No. Mary No.		+				-	-	-	-	-	-	-	-	-	-	-	-	-			-		-			-	-	-	-	-	-	-	-	-
March Marc					_	94	-	-	77	- 45		-	-	-	-	-							+			-	-	-	-	-	-	-	-	-
1.07/1998 1.0		-	-		+	+	-	-	-	-	-	-	-	-	-	-							-	-	-		-	-	-	-	-	-	-	-
CAMPANIS May		_				1	-	-	1	-		-	-	-									-		96	-	-	-	-	-	-	-	-	-
1.172/2002 18					1	-	-	-	-	-	-	-	-	-	-	-							-	-	- 21	-	-	-	-	-		-	-	<u> </u>
1417/2003 1					+	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	-	-		-	-	-	-	-	-	-	-	-
March Marc		_					-	-	-	-	-	-	-	-	-	-							-			-	-	-	-	-	-	-	-	-
11/15/16/16 18 18 18 18 19 18		-			+		-	-	-	-	-	- 41	-	-	-								-			-	-	-	-	-	-	-	-	-
114 120 183				_	_	+	-	-	-	-	-		-	-		-										-	-	-	-	-	-	-	-	-
## ## ## ## ## ## ## ## ## ## ## ## ##		-					-	-	-	-	-		-	-	-	-	-				-					-	-	-	-	-	-	-	-	-
11 5.0 5.5 6.1 5.0 5.5 6.1 5.0 5.5 6.1 5.0 5.5 5.2 5.8 5.5							-	-	-	-	-		-	-	-	-										-	-	-	-	-	-	-	-	-
151/2007		-					+ -	-	+ -	-	-		-	-	-	-										-	-	-	-	-		-	-	-
4/25/2008 . 78	5/2/2007	-	80	56.0	95	68	-	-	-	-	-	32	-	-	-	-	-	-	66	-	-	28	17	41	45	-	-	-	-	-		-		-
11/18/2008 70 45 230 150 		-		_	+	+	-	-	-	-	-		-	-	-	-		130		14	-					-	-	-	-	-	•	-		-
A/27/2009 . 77 52 119 35		-					-	-	-	-	-		-	46	-	-	-	160		-	-					-	-	-	-	70	-	-	- 33	-
4/20/2010	4/27/2009	-					-	-	-	-	-		-	-	-	-	-			-	-	25	7			-	-	-	-		-	-	27	-
11/11/2010							-			1	-				-																			
4/2/2011		+						+																		+								-
4/30/2012 - 60 39 210 41 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -								-																										-
11/5/2012 - 77 40 210 46 - - - - 53 - 90 48 120 27 -							-	-	-	-	-	-	-		-								_		-	-	-		-					-
5/7/2013 .<		+			_			+							-											_								-
12/19/2013 - 60 42 170 91							-				1				-																			-
11/3/2014 - 57 39 170 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	12/19/2013				_			1						42		96	44									+								-
4/6/2015 · 50 43 78 ·								+																										-
11/17/2015 - 57 38 170 - - - - 40 11/2 8 20 - 20 85 - - - - - 44 - <td></td> <td>-</td> <td></td> <td></td> <td>_</td> <td>+</td> <td>+ -</td> <td>-</td> <td></td> <td>1</td> <td>1</td> <td>-</td> <td></td> <td>-</td> <td>-</td> <td>-</td> <td></td> <td>1</td> <td>-</td> <td></td> <td></td> <td>-</td> <td>-</td>		-			_	+	+ -	-		1	1	-													-	-	-		1	-			-	-
11/2/2016 - 59 40 71	11/17/2015		57	38			-	-				-	-	41		-	40	120				20	1	85	-	-	-			44		47	-	-
4/24/2017 · 67 42 53 ·						1	+	1	+				-		-								1		-									-
					_								-		-								-		-									-
143 1 10 1 10 1 10 1 10 1 10 10 10 10 10 10	11/7/2017	-	59		170		-	-	-	-	-	-	-	45	-	210	43	120	6	18	-	39	-	80	-	-	-	-	-	48	-	51	-	-

Chromium (mg/L)

NH AGQS= 0.10 mg/L WQCTS (Water and Fish Ingestion) = NE

																															wų	C15 (water and r	Fish Ingestion) = NE
								Overb Monitori										Bedr Monitori				Groundwater Seep Monitoring Stations						Surface Water onitoring Statio					Leachate Monitoring Well
Sampling Date	RFW-1	RFW-2	RFW-3	RFW-4	GZ-1U	GZ-2	GZ-3	GZ-4	GZ-5	GZ-6	GZWP-1	GZ-102	GZ-104	GZ-106	GZ-201	GZ-202A	GZ-1L	GZ-2L	GZ-3L	Giancola Residence	SW-P-2 (P-2/1P-2R Southern Spring)	GZ-P-5R	SW-P-9 (P-9/1P-9R Northern Spring)	SW-1	SW-5	SW-10	SW-11	SW-12	SW-13	SW-16	SW-17	Exeter River	MW-6
5/27/1992	0.01	0.1	0.04	0.07	-		-	-	-	-	-	-	-	-		-	-	-		-			<0.01	-	-	-	-	-		-	-	-	0.06
11/12/1992	0.1	<0.01	0.02	0.03	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.01	-	-	-	-	-	-		
4/6/1993 7/1/1993	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.05 <0.05	-	-	-	-	-	-		0.08
11/5/1993	<0.05	<0.05	<0.05	<0.05	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.05	-	-	-	-	-	-	-	<0.05
4/14/1994	<0.01	<0.01	<0.01	<0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.01	-	-	-	-	-	-	-	-
7/15/1994 8/30/1994	<0.01	<0.01	0.016	<0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.01	-	-	-	-	-	-	-	0.08
9/6/1994	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.16
10/11/1994	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	<0.05
11/18/1994	<0.05	<0.05	<0.05	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.05	-	-	-	-	-	-	-	- <0.01
2/2/1995	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		<0.05
4/12/1995	<0.1	<0.1	<0.1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.1	-	-	-	-	-	-	-	<0.1
7/28/1995 12/8/1995	<0.1	<0.1	<0.1	<0.03	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.1	-	-	-	-	-	-	-	<0.1 0.018
4/26/1996	<0.03	<0.03	<0.03	0.04	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.03		-	- 1	-	-	-	-	<0.018
7/25/1996	<0.004	<0.004	<0.004	<0.004	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	<0.004	-	-	-		-	-	-	-
11/14/1996 4/21/1997	-	<0.004	<0.004	<0.004	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.004	-	<0.004	<0.004	-	-	-	-	-	-	-	-	
7/22/1997	-	<0.004	<0.004	<0.004 -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.004 -	-	<0.004	<0.004 -	-	-	-	-	-	-	-	-	-
11/11/1997	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-		-
4/15/1998 7/6/1998	<0.004	<0.004	<0.004	<0.004	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.004	-	-	<0.004	-	-	-	-	-	-	-	-	-
11/16/1998		-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-		-	-	-	-	-		-	-	-		-	-	-	-
4/19/1999	<0.004	<0.004	<0.004	<0.004	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.004	-	<0.004	<0.004	-	-	-	-	-	-	-	-	-
7/27/1999 11/18/1999	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
5/5/2000	<0.004	<0.004	0.008	0.009	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.004	-	-	-	-	-	-	-	-	-
7/7/2000	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	,	-	-
11/16/2000 4/25/2001	<0.004	<0.004	<0.004	0.006	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.012	-	0.0045	<0.004	-	-	-	-	-	-	-	-	-
7/25/2001	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	
8/9/2001	-	-	-	-	<0.004	-	-	-	-	-	-	-	-	-	-	-	<0.004	<0.004	<0.004	-		-		-	-	-	-	-	-	-	,	-	-
11/28/2001	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
4/24/2002	<0.01	<0.01	<0.01	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.01		-	-	-	-	-	-	-	-
11/20/2002	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-
4/29/2003 11/17/2003	<0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	-	-	-	-	-	-	-	-	-	-	-	<0.05 <0.05	<0.05 <0.05	<0.05	-	<0.05	-	<0.05 <0.05	<0.05 <0.05	-	-	-	-	-	-	-	-	-
4/28/2004	-	<0.05	<0.05	<0.05	<0.05	-	-	-		-	<0.05	-	-	-	-	-	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-	-	-	-	-	-	-	-	-
11/15/2004	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-
4/28/2005 11/8/2005	-	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	-	-	-	-	-	<0.05 <0.05	-	-	-	-	-	<0.05 <0.05	<0.05 <0.05	<0.05	-	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	-	-	-	-	-	-	-	-	-
4/17/2006	-	<0.05	<0.05	<0.05	<0.05	-	-	-	-	-	<0.05	-	-	-	-	-	<0.05	<0.05	<0.05	-	<0.05	<0.05	<0.05	0.26	-	-	-	-	-	-	-		
11/20/2006	-	<0.05	<0.05	<0.05	<0.05	-	-	-	-	-	<0.05	-	-	-		-	<0.05	<0.05	<0.05	-	<0.05	<0.05	<0.05	<0.05	-	-	-	-		-	-	-	-
5/2/2007	-	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	-	-	-	-	-	<0.05 <0.05	-	-	-	-	-	<0.05	<0.05 <0.05	<0.05	-	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	-	-	-	-	-	-	-	<0.05 <0.05	-
4/25/2008	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-0.03	-					-	-	-	-	-	-	-	-	-
11/18/2008	-	<0.05	<0.05			-	-	-	-	-	Dry	-	<0.002	-		-	<0.05	<0.05		-	Dry	<0.05	<0.05	-	-	-	-	-	<0.05	-	-	<0.05	-
11/4/2009 4/20/2010	-	<0.001	0.002	<0.001	<0.001	-	-	-	-	-	-	-	<0.001	-	-	-	<0.001	<0.001	<0.001	-	<0.001	<0.001	<0.001	-	-	-	-	-	<0.001	-	0.007	<0.001	-
11/11/2010		<0.001	<0.001	<0.001	<0.001	-	-	-		-	-	_	<0.001	-	-	-	<0.001	<0.001	<0.001	-	<0.001	<0.001	<0.001			Ė			0.001	_	<0.001	<0.001	-
4/22/2011	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	,	-	-
11/14/2011 4/30/2012	-	<0.001	<0.001 <0.001	<0.001 <0.001	<0.001 <0.001	-	-	-	-	-	-	-	<0.001 <0.001	-	-	-	<0.001	<0.001 0.001	<0.001	-	<0.001 <0.001	<0.001 <0.001	<0.001 <0.001	-	-	-	-	-	<0.001	-	<0.001	<0.001 <0.001	
11/5/2012	-	<0.001	<0.001	<0.001	<0.001	-	-	-	-	-	-	-	<0.001	-	<0.001	<0.001	<0.001	<0.001		-	<0.001	<0.001	<0.001	-	-	-	-	-	<0.001	-	0.002	<0.001	-
5/7/2013	-	-	-	-	-	-	-	-	-	-	-	0.008	<0.001	-	<0.001	<0.001	-	-		-	-	-	-	-	-	-	-	-		-		-	-
12/19/2013 4/15/2014	-	<0.001	<0.001	<0.001	<0.001		-	-	-	-	-	<0.001 <0.001	<0.001	<0.001	0.011	<0.001	<0.001	<0.001	<0.001	-	0.002	-	<0.001	-	-	-	-	-		<0.001	<0.001	++	-
11/3/2014		-	-	-	-	-	-	-	-	-	_	<0.001	-	<0.001	-	-	-	-		-	-	-	-	-					-	<0.001			-
4/6/2015	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-		-	-
11/17/2015 4/14/2016	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.01	-	-	-	-	-	-	-	<0.001	-	-	-	-
11/2/2016	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-		-	-	-	-	-	-	-	-	-		-	-	-	-
4/24/2017	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-
11/7/2017	-	<0.001	<0.001	0.003	-	-	-	-	-	-	-	-	< 0.001	-	0.017	< 0.001	0.003	<0.001	0.017	-	0.008	-	0.002	-	-	-	-	-	< 0.001	-	< 0.001	1 - 1	-

See last page for notes.

P-\\(\rm S\2\1006\)\(\rm 1\) Page 5 of 19

1,4-Dioxane (mg/L)

NH AGQS = 3 µg/L WQCTS (Water and Fish Ingestion) = NE

									Overbui Ionitorin										edrock oring We	lls		roundwater onitoring Sta						rface Wat					Leachate Monitoring Well
Sampling Date	RFW-1	RFW-2	RFW-3	RFW-4	GZ-1U	GZ-2	GZ-3	GZ-4	GZ-5	GZ-6	GZWP-1	GZ-102	GZ-104	GZ-106	GZ-201	GZ-202A	GZ-1L	GZ-2L	GZ-3L	Giancola Residence	SW-P-2 (P-2/1P-2R Southern Spring)	GZ-P-5R	SW-P-9 (P-9/1P-9R Northern Spring)	SW-1	SW-5	SW-10	SW-11	SW-12	SW-13	SW-16	SW-17	Exeter River	MW-6
4/27/2009	-	-	1	6	-	-	-	-	-	-	<1	-	-	-	-	-	-	<1	-	-	1	-	5	-	-	-	-	-	-	-	-	-	-
11/4/2009	-	-	1	4	-	-			-	-		-	<1	-	,		-	<1	-	-	1	-	2		-	-	,	-	<1	,	<1	<1	-
4/20/2010	-	-	-	-	-	-	-	-	-	-	-	-		-			-	-		1	-	-	-	-	-	-	•	-	-	-	-	-	-
11/11/2010	-	<1	2	4	<1	-	-	-	-	-		-	1	-	٠		<1	<1	<1		1	<1	3	-	-	-	٠	-	-	-		-	-
4/22/2011	-	< 0.25	1	1	<0.25	-	-	-	-	-	-	-	0.95	-	-	-	-	<0.25	-	-	0.58	<0.25	2	-	-	-	-	-	-	-	-	-	-
11/4/2011	-	<0.25	1.3	1.4	<0.25	-	-	-	-	-	-	-	1.6	-	-	-	<0.25	<0.25	<0.25	-	0.56	<0.25	-	-	-	-	-	-	-	-	-	-	-
4/30/2012	-	0.55	1.6	2.8	<0.25	-	-	-	-	-	-	-	0.83	-	-	-	-	<0.25	-	-	1.2	0.50	-	-	-	-	-	-	-	-	-	-	-
11/5/2012	-	<0.25	1.5	1.3	<0.25	-	-	-	-	-	-	-	1.7	-	<0.25	2.8	<0.25	<0.25	-	-	1.4	0.55	2.1	-	-	-	-	-	<0.25	-	<0.25	<0.25	-
5/7/2013	-	-	-	-	-	-	-	-	-	-	-	0.70	1.2	-	<0.25	2.4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
12/19/2013	-	< 0.25	0.25	1.1	<0.25	-	-	-	-	-	-	0.79	1.2	-	<0.25	2.0	<0.25	<0.25	<0.25	-	-	-	1.1	-	-	-	-	-	-	1.3	<0.25	-	-
4/15/2014	-	-	-	-	-	-	-	-	-	-	-	<0.25	-	<0.25	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.25	-	-	-
11/3/2014	-	-	-	-	-	-	-	-	-	-	-	0.33	-	0.92	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	< 0.25	-	-	-
11/17/2015	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1.2	-	-	-	-	-	-	-	<0.25	-	-	-	-
11/2/2016	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
4/24/2017	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
11/7/2017	-	< 0.25	2.2	3.2	-	-	-	-	-	-	-	-	0.71	-	< 0.25	2.0	< 0.25	< 0.25	< 0.25	-	1.4	-	1.4	-	-	-	-	-	< 0.25	-	1.3	-	-

Iron (mg/L)

NH AGQS = NE SMCL = 0.30 mg/L

									burden									Bed				Groundwater Seep						rface Water					Leachate
Sampling		1		I	1		1	Monito	ring Wells	1	1	I	I			1	1	Monitori	ng Wells			Monitoring Stations	1	I		1	Monit	toring Stations	: 	I			Monitoring Well
Date	RFW-1	RFW-2	RFW-3	RFW-4	GZ-1U	GZ-2	GZ-3	GZ-4	GZ-5	GZ-6	GZWP-1	GZ-102	GZ-104	GZ-106	GZ-201	GZ-202A	GZ-1L	GZ-2L	GZ-3L	Giancola Residence	SW-P-2 (P-2/1P-2R Southern Spring)	GZ-P-5R	SW-P-9 (P-9/1P-9R Northern Spring)	SW-1	SW-5	SW-10	SW-11	SW-12	SW-13	SW-16	SW-17 E	xeter River	MW-6
5/27/1992	_	42 0.35	19 0.21	66 2.52	-	-	-	-	-	-	-	-	-	-	-		-	-			-	-	-	-	0.24	-		-	-	-	-	•	110
4/6/1993	0.06	22.8	9.8	30	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.24	-	-	-	-	-	-	-	174
7/1/1993	0.93	3.01	25.59	4.59		-	-	-	-	-	-	-	-	-	-	-	-		-		-	-	-	-	3.07	-		-	-	-	-		
11/5/1993	0.81 2.55	1.6 8.82	4.4 3.22	15.1 46.9	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	0.37 2.25		-	-	-	-	-	-	49 -
7/15/1994	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
8/30/1994 9/6/1994	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	400 470
10/11/199		-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	·	135
11/18/199	_	1.75	1.28		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.04	-	-	-	-	-	-	-	-
2/2/1995	_	-	-		-	-	-	-	-	-	-	-		-	-	-	-	-	-		-	-	-	-		-	-	-		-	-		43
4/12/1995 7/28/1995	_	4.1 1.32	2.6 0.52	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.1 <0.1	-	-	-	-	-	-	-	85 11
12/8/1995	<0.04	0.41	3.7	31	-	-	-	-	-	-	-		-	-	-	-	-	-	-		-	-	-	-	0.91	-		-		-	-	·	66
4/26/1996 7/25/1996	<0.02 0.015	0.55	0.55	28 44	-	-	-	-	-	-	-	-	-	-	-	-	-		-		-	-	-	-	0.06 2.8		-	-	-	-	-	-	3.5
11/14/199	-	0.45	12	30	-	-	-	-	-	-	-				-	-	-	-	-		3.3	-	5.9	3.7	-	-		-		-	-	-	-
4/21/1997 7/22/1997	3.4	0.34	1.5 0.036	32 37	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	0.18 0.095	-	3.3 0.065	0.49 0.67	-	-	-	-	-	-	-	-	-
11/11/199		0.48	4.8	31	-	-	-	-	-	-	-				-	-	-	-	-		0.41	-	26	0.4	-	-		-		-	-	-	-
7/6/1998	0.012	0.59	18 4.1	25 33	-	-	-	-	-	-	-	-	-	-	-	-	-	-			12 130	-	280	0.34 1.1	-	-	-	-	-	-	-	-	-
11/16/199	_	0.51	0.28	36	-	-	-	-	-	-	-		-	-	-	-	-	-	-		0.74	-	63	0.53	-	-	-	-		-	-	-	-
4/19/1999 7/27/1999	_	0.48	2.96 3.8	31 33	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	0.85 0.62	-	110 1500	0.64 1.3	-	-	-	-	-	-	-	-	-
11/18/199	_	0.51	410	30	_ ·	-	-	-		-	-	-	-	-		-	-		-		0.36	-	1900	420		-	-	-	-	-	- 1	-	-
5/5/2000 7/7/2000	0.071	0.53	12 62	31 40	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	5.5	-	160	0.22	-	-	-	-	-	-	-	-	-
11/16/200		0.16	10	28	_ ·_	-	-	-	-	-	-	-		-	-	-	-		-		10	-	6.8	122		-	-	-		-	-	-	-
4/25/2001 7/25/2001	0.2 <0.03	0.34	16 22	30 38	<0.004	-	-	<0.044	<0.044	<0.044	<0.044	-	-	-	-	-	0.291	<0.044	<0.044		120 32	-	10 3,700	7.3 21	-	-	-	-	-	-	-	-	-
8/9/2001		-	-	-	<0.044	-	-	-		-	-			-	-	-	<0.044	0.578	0.054		-	-	-	-	-	-	-	-	-	-	-	-	-
1/17/2002	- <0.05	0.29	7.4	16		-	-	-	-	-	-	-	-	-	-	-	-		-		0.45	-	-	510	-	-	-	-	-	-	-	-	-
4/24/2002	_	0.78	15	36	-	-	-	-	-	-	-			-	-	-	-	-	-		-	-	-	0.77	-	-	-	-	-	-	-	-	-
11/20/2003 4/29/2003	2 <0.05 <0.05	3.6 2.2	58 100	40 38	<0.05	-	-	-	-	-	-	-	-	-	-	-	<0.05	28	<0.05	-	0.78	-	15	0.24 0.14	-	-	-	-	-	-	-	-	-
11/17/200	3 -	3.1	38	25	<0.05	-	-	-	-	-	-			-	-	-	<0.05	26	0.06	-	-		7.0	0.18	-	-	-	-		-	-	-	-
4/28/2004 11/15/200	1 -	1.9 5.2	22 8.7	37 32	<0.05 <0.05	-	-	-	-	-	2.1 5.4	-	-	-	-	-	<0.05 <0.05	2.5	<0.05 0.09	0.05	0.35 5.0	2.4 0.53	7.0	0.49 1.8	-	-	-	-	-	-	-	-	-
4/28/2005	-	2.0	8.6	26	<0.05	-	-	-	-	-	7.1			-	-	-	<0.05	3.2	<0.05		0.72	0.27	2.4	0.59		-	-	-		-	-	-	-
11/8/2005 4/17/2006	-	3.0 0.68	1.8	38 32	<0.05 <0.05	-	-	-	-	-	13 12	-	-	-	-	-	<0.05 <0.05	10 6.8	<0.05 <0.05	-	2.3 0.58	0.98	6.0 2.9	4.0 380.0	-	-	-	-	-	-	-	-	-
11/20/200	-	1.1	2.9	25	<0.05	-	-	-	-	-	11			-	-	-	<0.05	0.08	<0.05		2.0	0.39	0.45	0.49	-	-		-		-	-	-	-
5/2/2007 11/14/200	7 -	2.4 1.4	2.2	25 37	<0.05 <0.05	-	-	-	-	-	20 21	-	1.7	-	-	-	0.43	2.4 <0.05	0.10		4.7 0.67	0.87 0.23	5.30 6.0	5.40 0.32	-	-	-	-		-	-	0.03	-
4/25/2008	-	0.73	3.8	37	<0.05	-	-	-	-	-	22			-	-	-		0.32	-	-	5.4	<0.05	4.7	0.31	-	-	-	-	0.64		-	0.38	-
11/18/2009 4/27/2009		0.85 0.44	0.50 0.07	48 32	<0.05 <0.05	-	-	-	-	-	3.2	-	0.84	-	-	-	<0.05	<0.05 <0.05	-	-	Dry 3.4	2.3 0.39	9.3 4.2	0.57 2.7	-	-	-	-	1.7 0.31		0.22	0.7	-
11/4/2009	_	2.0	<0.05	40	<0.05	-	-	-	-	-	-	-	0.68	-	-	-	<0.05	0.69	<0.05	,	6.2	0.48	8.2	-	-	-	-	-	0.61	-	26	0.39	-
4/20/2010 11/11/2010		1.0 3.7	0.31 0.17	36 29	<0.05 <0.05	-	-	-	-		-		<0.05 <0.05	_	-	-	<0.05	<0.05 <0.05	<0.05	-	3.2 3.4	0.16 0.41	3 11	-	-	-	-		0.69	<u>L</u>	4.5 2.8	0.20	-
4/22/2011	-	0.62	0.27	20	<0.05	-	-	-	-	-	-	-	0.07	-	-	-	-	<0.05	-	-	1.9	<0.05	7	-	-	-	-		2.6		5.1	0.23	-
11/14/201 4/30/2012		0.43 1.8	1.1 2.1	26 37	<0.05 0.27	-	-	-	-	-	-	-	2.6 5.9	-	-	-	<0.05	<0.05 <0.05	<0.05	-	0.08 6.5	<0.05 0.38	3.3 15	-	-	-	-	0.26	0.12	-	0.53	0.25	-
11/5/2012	-	0.15	0.90	31	<0.05	-	-	-	-	-	-		6.3	-	<0.05	46	<0.05	0.09	-	-	4.1	0.12	15	-	-	-	-	-	2.4		8.5	0.35	-
5/7/2013 12/19/201		2.4	3.1	20	<0.05	-	-	-	-	-	-	0.55 3.1	14 16	-	0.09 2.8	58 38	<0.05	1.4	0.46	-	6.6	-	7.8	-	-	-	-	-	-	6.0	3.5	-	-
4/15/2014	-	5.3	4.7	24	<0.05	-	-	-	-	-	-	<0.05	8.7	0.06	0.81	66	1.1	2.3	-	-	-	-	14	-	-	-	-	-	-	4.7	24	-	-
11/3/2014 4/6/2015	_	3.0 2.1	7.0 10.0	20 41	-	-	-	-	-	-	-	<0.05	8.9 18	0.05	0.98 7.3	48	1.7 0.96	2.3	4.0 8.3	-	-	-	8.3 1.6	-	-	-	-	-	-	<0.05 0.17	5.4 3.4	-	-
11/17/201	-	1.6	59.0	19	-	-	-	-	-	-	-	-	24	-	0.2	35	0.91	0.81	1.9	-	31	-	6.7	-	-	-	-	-	0.09	-	0.12	-	-
4/14/2016 11/2/2016	_	0.19 4.9	6.0 16.0	22 55	-	-	-	-	-	-	-	-	6.1 20.0	-	3.1 <0.05	30	0.27 2.2	1.5	6.3 9.9	-	-	-	3.0 14.0	-	-	-	-	-	-	-	0.76 0.18	-	-
4/24/2017	-	0.62	21	27		-	-	-	-	-	-	-	6.9	-	41	0.58	0.50	3.2	12	-		-	2.5	-	-	-	-	-		-	28	-	-
11/7/2017	for notes.	0.10	21	32	<u> </u>		1 -	-		-	1 -	-	16		7.4	51	0.95	0.42	9.4	-	42	-	43	-	-	-	-		5.6		0.24	-	-

Lead (mg/L)

NH AGQS = 0.015 mg/L WQCTS (Water and Fish Ingestion) = NE

								Overb	burden ring Wells									Ber	drock oring Wells			Groundwater Seep Monitoring Stations						Surface Wate					sh Ingestion) = NE Leachate Monitoring Well
Sampling Date	DEW 1	RFW-2	RFW-3	RFW-4	GZ-1U	GZ-2	GZ-3	GZ-4	GZ-5	GZ-6	GZWP-1	GZ-102	GZ-104	GZ-106	GZ-201	GZ-202A	GZ-1L		GZ-3L	Giancola	SW-P-2 (P-2/1P-2R	GZ-P-5R	SW-P-9 (P-9/1P-9R	SW-1	SW-5	SW-10	SW-11	SW-12	SW-13	5W 16	SW-17	Eveter River	MW-6
F /27 /1002	RFW-1																	GZ-2L	GZ-3L	Residence	Southern Spring)	- GZ-P-5K	Northern Spring)	3W-1	3VV-5	5W-10	5W-11	5W-12	5W-13	SW-16	5W-17	Exeter River	
5/27/1992 11/12/1992	0.006 <0.01	0.031 < 0.01	0.011 <0.01	0.025 <0.01	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-		<0.005	-	<0.01	-	-	-	-	-	-	-	0.03
4/6/1993	0.001	0.001	0.001	0.001	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	0.001	-	-	-	-	-	-	-	0.018
7/1/1993	<0.1	<0.1	9.06	<0.1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.78	-	-	-	-	-	-	-	-
11/5/1993 4/14/1994	<0.01 <0.005	<0.01 <0.005	<0.01	<0.01 <0.005	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.01 <0.005	-	-	-	-	-	-	-	<0.01
7/15/1994	<0.05	0.052	<0.05	<0.05	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.05	-	-	-	-	-	-	-	-
8/30/1994	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	•		-	-	-	-	-	-	-	-	-	-	<0.1
9/6/1994	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.03
11/18/1994	<0.001	<0.001	<0.001	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	<0.001	-	-	-	-	-	-	-	-
12/23/1994	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.005
2/2/1995 4/12/1995	<0.005	<0.005	<0.005	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-		-	-	-	<0.005	-	-	-	-	-	-	-	<0.001 <0.005
7/28/1995	<0.005	<0.005	<0.005	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	<0.005	-	-	-	-	-	-	-	<0.005
12/8/1995	<0.002	0.003	0.006	0.004	-	-	-	-	-	-	-		-	-		-	-	-	-	-	-	-	-	-	0.003	-	-	-	-	-	•	-	0.009
4/26/1996 7/25/1996	<0.02 <0.005	<0.02 0.053	<0.02	<0.02 0.007	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.02 <0.005	-	-	-	-	-	-	-	<0.02
11/14/1996		0.055		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<u> </u>	-	-	-	-	-	-0.003	-	-	-	-	-	-	-	-
4/21/1997	-	0.004	0.004	0.004	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	0.18	-	0.012	0.003	-	-	-	-	-	-	-	-	-
7/22/1997 11/11/1997	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
4/15/1998	<0.002	<0.002	18	<0.002	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.002		-	<0.002	-	-	-	-	-	-	-	-	-
7/6/1998	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
11/16/1998 4/19/1999	<0.002	<0.002	<0.002	<0.002	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.002	-	0.003	<0.002	-	-	-	-	-	-	-	-	-
7/27/1999					-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	0.003	-	-	-	-	-	-	-	-	-	-
11/18/1999	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-
5/5/2000 7/7/2000	<0.002	<0.002	<0.002	<0.002	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	•	-	-	<0.002	-	-	-	-	-	-	-	-	-
11/16/2000	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
4/25/2001	<0.002	<0.002	<0.002	<0.002	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.002		<0.002	<0.002	-	-	-	-	-	-	-	-	-
7/25/2001	-	-	-	-	.0.046	-	-					-		-		-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-
8/9/2001 11/28/2001	-	-	-	-	<0.016	-	-	-	-	-	-	-	-	-	-	-	<0.016	<0.016	<0.016	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1/17/2002	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-
4/24/2002	<0.01	<0.01	<0.01	<0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.01	-	-	-	-	-	-	-	-	-
11/20/2002 4/29/2003	<0.01	<0.01	<0.01	<0.01	<0.01	-	-	-	-	-	-		-	-	-	-	<0.01	<0.01	<0.01	-	<0.01	-	<0.01	<0.01	-	-	-	-	-	-		-	-
11/17/2003	-	<0.01	<0.01	<0.01	<0.01	-	-	-	-	-	-	-	-	-	-	-	<0.01	<0.01	<0.01	-	-	-	<0.01	<0.01	-	-	-	-	-	-	-	-	-
4/28/2004	-	<0.01	<0.01	<0.01	<0.01	-	-	-	-	-	<0.01	-	-	-	-	-	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	-	-	-	-	-	-	-	-	-
11/15/2004 4/28/2005	-	<0.01	<0.01	<0.01	<0.01	-	-	-	-	-	<0.01		-	-	-	-	<0.01	<0.01	<0.01	-	<0.01	<0.01	<0.01	<0.01	-	-	-	-	-	-		-	-
11/8/2005	-	<0.01	<0.01	<0.01	<0.01	-	-	-	-	-	<0.01	-	-	-		-	<0.01	<0.01	<0.01	-	<0.01	<0.01	<0.01	<0.01	-	-	-	-	-	-	-	-	-
4/17/2006	-	<0.01	<0.01	<0.01	<0.01	-	-	-	-	-	<0.01	•	-	-	-	-	<0.01	<0.01	<0.01	-	<0.01	<0.01	<0.01	0.36	-	-	-	-	-	-	•	-	-
11/20/2006 5/2/2007		<0.01 <0.01	<0.01	<0.01 <0.01	<0.01	-	-	-	-	-	<0.01 <0.01	-	-		-	-	<0.01	<0.01	<0.01	-	<0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	-		-			-	-	<0.01	-
11/14/2007	-	<0.01	<0.01	<0.01	<0.01	-	-	-	-	-	<0.01		-	-	-	-	<0.01	<0.01	<0.01	-	<0.01	<0.01	<0.01	0.01	-	-	-	-	-	-	-	<0.01	-
4/25/2008	-		-0.000	-0.000		-	-	-	-	-	- D	-	-0.004	-	-	-			-	-	- D	-0.000	-0.000	-	-	-	-	-	-0.000	-	-	-0.000	-
11/18/2008	-	<0.008	<0.008	<0.008	<0.008	-	-	-	-	-	Dry -	-	<0.001	-	-	-	<0.008	<0.008	<0.001	-	<0.001	<0.008 <0.001	<0.008 <0.001		-		-		<0.008	-	0.012	<0.008 <0.001	-
4/20/2010	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
11/11/2010	-	<0.001	<0.001	<0.001	<0.001	-	-	-	-	-	-	•	<0.001	-	-	-	<0.001	<0.001	<0.001	-	<0.001	<0.001	<0.001	-	-	-	-	-	0.058	-	<0.001	<0.001	-
4/22/2011 11/14/2011	-	<0.001	<0.001	<0.001	<0.001	-	-	-	-	-	-	-	<0.001	-	-	-	<0.001	<0.001	<0.001	-	<0.001	<0.001	<0.001	-	-	-	-	-	<0.001	-	<0.001	<0.001	-
4/30/2012	-	<0.001	<0.001	<0.001	<0.001	-	-	-	-	-	-	-	0.002	-	-	-	-	<0.001	-	-	<0.001	<0.001	<0.001	-		-	-	-	<0.001	-	<0.001	<0.001	-
11/5/2012	-	<0.001	<0.001	<0.001	<0.001	-	-	-	-	-	-		<0.001	-	<0.001	<0.001	<0.001	<0.001	-	-	<0.001	<0.001	<0.001	-	-	-	-	-	0.001	-	0.003	<0.001	-
5/7/2013 12/19/2013	-	<0.001	<0.001	<0.001	<0.001	-	-	-	-	-	-	<0.001	<0.001 <0.001	-	<0.001	<0.001 <0.001	<0.001	<0.001	<0.001	-	0.009	-	<0.001	-	-	-	-	-	-	<0.001	0.001	-	-
4/15/2014	-	-	-	-	-	-	-	-	-	-	-	<0.001	-	<0.001	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.003		-	-
11/3/2014	-	-	-	-	-	-	-	-	-	-	-	<0.001	-	<0.001		-	-	-	-	-	-	-	-	- 1	-	-	-	-		<0.001		-	-
4/6/2015 11/17/2015	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	0.041	-	-	-	-	-	-	-	<0.001	-	-	-	-
4/14/2016	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-
11/2/2016	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-
4/24/2017 11/7/2017	-	<0.001	<0.001	0.003	-	-	-	-	-	-	-	-	<0.001	-	0.010	<0.001	0.001	<0.001	0.006	-	0.028		0.006		-		-	-	<0.001	-	<0.001	-	-
See last page for		~0.001	~0.001	0.003								,	~0.001		0.010	~U.UU1	0.001	~0.001	0.000		0.020		0.000		,				~0.001		~0.001		

P-)LOBIS/21/00(s)/21/27/0](s4-0021/27/0_2-1/27/0

Mercury (mg/L)

NH AGQS = 0.002 mg/L WQCTS (Water and Fish Ingestion) = 0.00005 mg/L

Part									Over	burden									Bed	rock			Groundwater Seep						Surface Wate	ır				Leachate
Part	Slin-																											м						
March Marc		RFW-1	RFW-2	RFW-3	RFW-4	GZ-1U	GZ-2	GZ-3	GZ-4	GZ-5	GZ-6	GZWP-1	GZ-102	GZ-104	GZ-106	GZ-201	GZ-202A	GZ-1L	GZ-2L	GZ-3L		(P-2/1P-2R	GW-P-5R	(P-9/1P-9R	SW-1	SW-5	SW-10	SW-11	SW-12	SW-13	SW-16	SW-17	Exeter River	MW-6
Mary		<0.0003	<0.0003	<0.0003	<0.0003	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0003	-	-		-	-	-	-	-	-	<0.0003
Column		<0.0002	- <0.0002	- <0.0002	<0.0002	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- <0.0002		-	-	-	-	-	-	- <0.0002
Second	w.		-	-		-	-	-	-	-	-	-	-		-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	- 40.0002
Column C	11/5/1993	-	-		1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-
Color	4	<0.0002	<0.0002	<0.0002	<0.0002	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0002	-	-	-	-	-	-	-	-
March Marc		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0002
Control Cont		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
March Marc					-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-		-	-	-	-	-	-	-	<0.0002
Column C		<0.0002	<0.0002		_	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-		-	-	-	<0.0002		-		-	-	-	-	<0.0003
Column C	2/2/1995	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0002
Column C		<0.001	<0.001		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	
Second		<0.0002	<0.0002			-	-	-	-	-	-	-	-	-		-	-	-	-	-	-		-	-	-			-	-	-	-	-		
Column C	4/26/1996	<0.0002	<0.0002	<0.0002	<0.0002	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0002	-	-	-	-	-	-	-	<0.0002
Column C		0.0008	0.0007	0.0007	0.0012	-	-	-	-	-	-	-	-	-	-	-	-	-				-		-	-					-	-	-	-	
Control Cont		-	0.0003	<0.0002	0.0002	-	-	-	-	-	-	-	-	-		-	-	-	-	-		<0.0002		<0.0002	<0.0002	-				-	-	-	-	
Marchan Marc		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Marchan Marc		-0.0003				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-0.0003	-	-	-0.0003	-	-	-	-	-	-	-	-	
Column C	٠	- <0.0002	<0.0002			-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	<0.0002	-	-	-	-		-	-	-	-	-		
Miles	11/16/1998	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
No.		<0.0002	<0.0002	<0.0002	<0.0002	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0002	-	<0.0002	<0.0002	-	-	-	-	-	-	-	-	-
Note		-		-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-		-	-	-	-		-	-	-	-	-	-	
March Marc		<0.0002	<0.0002	<0.0002	<0.0002	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0002	-	-	-	-	-	-	-	-	-
Marchan Marc		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-
March Marc		<0.00035	<0.00035	<0.00035	<0.00035	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.00035	-	<0.00035	<0.00035	-	-	-	-	-	-	-	-	
1.757/1978		-	-	-	-		-	-	-	-	-	-	-	-	-	-	-				-	-	-	-	-	-	-	-	-	-	-	-	-	-
\$\frac{1}{2}\frac{1}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac		-	-	-	-	<0.0005	-	-	-	-	-	-	-	-	-	-	-	<0.0005	<0.0005	<0.0005	-	-	-	-	-		-	-	-	-	-	-	-	-
14/2000 14/2000		-	-	-	-		-	-	-	-	-		-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
402-200 4000		<0.0004	<0.0004	<0.0004	<0.0004	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0004	-	-	-	-	-	-	-	-	
11/1/2003 1/1/2005		<0.0005	<0.0005	- <0.0005	<0.0005	0.0005	-	-	-	-	-	-	-	-	-	-	-	<0.0005	<0.0005	<0.0005	-	- <0.0005	-	<0.0005	<0.0005	-		-	-	-	-	-	-	
11/12/2008 0.0009							-	-	-	-	-	-	-	-	-	-	-					-	-			-	-	-	-	-	-	-	-	
14/2/2/2/2/2 14/2/2/2 14		-	<0.0009	<0.0009	<0.0009	<0.0009	-	-	-	-	-	<0.0009	-	-	-	-	-	<0.0009	<0.0009	<0.0009	<0.0009	<0.0009	0.0013	<0.0009	<0.0009	-	-	-	-	-	-	-	-	-
14/17/2006 0.0009		-	- 0.0000				-	-	-	-	-	- 0.0000	-	-		-	-			- 0.0009	-					-	-	-	-	-	-	-	-	
11/10/2006 -0.0009 -							-	-	-	-	-		-	-	-	-	-									-	-	-		-	-	-	-	
11/14/7017 0.0009		-					-	-	-	-	-		-	-		-	-				-					-		-	-	-	-	-	-	-
11/14/2007		-				_	-	-	-	-	-	1	-	-	-	-	-	<0.0009		<0.0009	-					-		-	-	-	-	-	<0.0009	
11/18/2008		<u> </u>								-		-	-		-	-	-	-		-	-				-	-		-	-		-	-	-	
11/4/2009		-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-
470/2010		-					-	-	-	-	-	Dry -	-		-	-	-			0.0002	-				-	-	-	-	-		-	<0.001		
4/22/2011							-	-	-	-	-	-	-	1	-	-	-		-	-	-				-	-	-	-	-		-			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		-					-	-	-	-	-	-	-	-	-	-	-	<0.0001	<0.0001		-				-	-	-	-	-		-		<0.0001	
4/30/2012							-	-	-	-	-	-	-		-	-	-	<0.0001	0.0002						-						-		<0.0001	
5/7/2013	4/30/2012						-	-	-	-	-	-	-	<0.0001	-	-	-	-	0.0003	-		<0.0001	<0.0001	<0.0001	-				1		-		<0.0001	
12/19/2013					+		+	+	-	-		-	-		-										-				-		-		<0.0001	
4/15/2014							1			-		-			-										-				_		<0.0001		-	
4/6/2015	4/15/2014	-		-	-	-	-	-	-	-	-	-	<0.0001	-		-	-	-	-		-	-	-	-	-	-		-	-	-	<0.0001	-	-	
11/7/015					+		-	-	-	-	-	-		-		-	-	-														-	-	
4/14/2016 · · · · · · · · · · · · · · · · · · ·					+		+	-		-			-												-				1				-	
4/24/2017	4/14/2016							-	-	-	-	-	-		-	-		-				-			-					-			-	-
		+		-		-				-		-	-		-	-	-	-							-	-			1		-		-	
				<0.0001		-	-	-	-	-	-	-	-			<0.0001	<0.0001	<0.0001			-		-		-	-		-	-		-		-	

P:\JOBS\21000s\21270\04.0021270.29\Report\2017 Annual Report\Cross Road TABLE 1.xls Page 9 of 19 GZA GeoEnvironmental Inc. Manganese (mg/L)

NH AGQS = 0.840 mg/L WQCTS (Water and Fish Ingestion) = 0.05 mg/L

									burden ring Wells									Bed Monitori				Groundwater Seep Monitoring Stations						Surface Water	ons				Leachate Monitoring Well
Sampling Date	RFW-1	RFW-2	RFW-3	RFW-4	GZ-1U	GZ-2	GZ-3	GZ-4	GZ-5	GZ-6	GZWP-1	GZ-102	GZ-104	GZ-106	GZ-201	GZ-202A	GZ-1L	GZ-2L	GZ-3L	Giancola Residence	SW-P-2 (P-2/1P-2R Southern Spring)	GW-P-5R	SW-P-9 (P-9/1P-9R Northern Spring)	SW-1	SW-5	SW-10	SW-11	SW-12	SW-13	SW-16	SW-17	Exeter River	MW-6
5/27/1992	0.14	0.93	4.9	4			-	-			-										-	-	0.16	-			-	-		-		-	6.4
11/12/1992	0.01	0.01	4.75	0.965	-	-	-	-	-	-	-	-	-			-	-	-		-	-	-	-	-	2.53	-		-		-		-	
4/6/1993 7/1/1993	<0.01 0.59	0.56	6.62	4.32 5.24	<u> </u>	-	-	-	-	-	-	-	-		-	-	-	-	- :	-		-	-	-	0.04 <0.01	-		-	-	-	-	-	1.56
11/5/1993	0.12	0.34	10.8	4	-	-	-	-	-	-	-		-			-	-	-		-	-	-	-	-	3.7	-		-		-		-	0.78
4/14/1994	1.31	1.07	11.3	4.75	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	4.29	-		-		-	-	-	- '
7/15/1994 8/30/1994	-	-		-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-
9/6/1994	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-		-	-
10/11/1994 11/18/1994	0.05	0.19	9.9	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.08	-	-	-		-		-	-
12/23/1994	-	- 0.19	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-
2/2/1995	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	
4/12/1995 7/28/1995	<0.05 <0.05	0.68	10.6	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-		-	-	-	<0.05 7.3	-	-	-	-	-	-	-	- '
12/8/1995	<0.01	0.56	13	3	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	6.1	-	-	-	-	-	-	-	-
4/26/1996	<0.01	0.61	9.2	3.2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.01	-	-	-	-	-	-	-	
7/25/1996 11/14/1996	<0.02	0.66	15 16	5.9 3.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.37	-	1.8	0.54	8.4	-	-	-	-	-	-	-	-
4/21/1997	-	0.4	14	3.1		-	-		-	-	-	-	-		-	-		-			0.01	-	1.4	0.11	-	-	-	-	-	-	-	-	
7/22/1997	0.8 <0.005	0.47	0.36	3.3	-	-	-	-	-	-	-		-		-	-	-	-	<u> </u>	-	0.42	-	2.8 4.4	0.8	-	-	-	-	-	-		-	
4/15/1998	<0.005	0.67	14	3		-	-	-	-	-	-		-	-	-	-	-	-	-	-	5.5	-	-	0.055	-	-	-	-	-	-	-	-	-
7/6/1998	-	0.52	21	4.4	-	-	-	-	-	-	-		-	-	-	-	-	-	-		10	-	3.6	0.17	-	-		-		-		-	-
11/16/1998 4/19/1999	<0.005 <0.005	0.64	6.8	3.6	-	-	-	-	-	-	-		-		-	-		-	•	-	0.028	-	3.4	0.065 3.8	-	-	-	-	-	-	-	-	
7/27/1999	<0.005	0.51	6.3	3.4	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	16	-	54	1.8	-	-	-	-	-	-	-	-	-
11/18/1999	<0.005	0.61	7.8	3.4	· ·	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.32	-	320	94	-	-	-	-	-	-	-	-	- '
5/5/2000 7/7/2000	0.018 0.16	0.55	7.8	4.3 5.7	-	-	-	-	-	-	-	-	-		-	-	-	-	-		8.5	-	50	0.096 2.1	-	-	-	-		-		-	-
11/16/2000	<0.005	0.51	4.8	4.1	-	-	-	-	-	-	-		-		-	-	-	-	-		4.5	-	2.6	51	-	-	-	-	-	-	-	-	-
4/25/2001 7/25/2001	<0.005 <0.003	0.97	2.9	5.1 4.8	1.53	-	-	0.0946	0.893	0.0834	-		-		-	-	0.413	0.404	0.175	-	5.6 1.2	-	1.7	1.8 5.7	-	-	-	-	-	-	-	-	
8/9/2001	-	-		-	0.902	-	-	-	-	-	-	-	-	-	-	-	0.399	1.730	0.195	-	-	-	-	-	-	-		-	-	-	-	-	-
11/28/2001	<0.03	0.42	1.2	2.2		-	-	-	-	-	-		-	-	-	-	-	-	-		0.03	-	-	110	-	-	-	-	-	-	-	-	
1/17/2002 4/24/2002	<0.03	0.81	2.1	6.6		-	-	-	-	-	-	-	-		-	-	-	-		-	-	-	-	0.39	-	-	-	-	-	-	-	-	-
11/20/2002	<0.03	1.1	4.8	5.1		-	-	-	-	-	-		-	-	-	-	-	-	-	-		-	-	0.05	-	-	-	-	-	-	-	-	-
4/29/2003 11/17/2003	<0.03	0.89	6.8 3.0	2.8 3.6	0.23	-	-	-	-	-	-	-	-	-	-	-	0.34	9.9	0.11	-	0.52	-	3.5 2.5	0.05	-	-		-	-	-	•	-	
4/28/2004	-	0.75	1.9	5.5	0.08	-	-	-	-	-	4.9		-	-	-	-	0.48	5.8	0.12	<0.05	0.84	1.1	0.64	<0.05	-	-	-	-	-	-	-	-	-
11/15/2004	-	0.81	1.0	5.2	<0.03	-	-	-	-	-	4.6	-	-	-	-	-	0.09	14	0.17	-	1.1	0.66	2.0	0.17	-	-	-	-	-	-	-	-	-
4/28/2005 11/8/2005	-	0.86	0.88	4.7 3.8	0.04 <0.03	-	-	-	-	-	6.8 5.3		-	-	-	-	0.05 <0.03	18 10	0.16	-	0.53 1.1	0.29	1.1 2.5	<0.03 1.9	-	-	-	-	-	-	-	-	
4/17/2006	-	0.72	0.33	3.0	<0.03	-	-	-	-	-	4.2		-	-	-	-	<0.03	11	0.07	-	0.94	0.68	1.4	260	-	-		-	-	-	-	-	-
11/20/2006 5/2/2007	-	0.78	0.36 4.1	2.3	1.5	-	-	-	-	-	2.7 3.2	-	-	-	-	-	0.03	7.5 8.5	0.10	-	1.1	0.48 0.74	1.5 2.3	0.19 2.7	-	-	-	-	-	-	-	0.05	
11/14/2007	-	1	1.9	3.4	0.54		-	-	-		3.2	-	4.0		-	-	0.13	4	0.12	-	1.0	0.74	2.8	0.26	-	-	-	-	-	-		0.05	
4/25/2008	-	1.1	6.1	3.9	2.9	-	-	-	-	-	4.0	-	-	-	-	-	-	6.1	-	-	1.8	0.41	2.4	0.13	-	-	-	-	0.30	-		0.10	
11/18/2008 4/27/2009	-	1.2	0.75	4.7 3.5	4.2 3.7	-	-	-	-	-	Dry 1.5	-	0.27	-	-	-	<0.03	0.70	-	-	Dry 1.2	0.63 0.31	2.5 1.5	0.05 0.77	-	-	-	-	3.2 0.11	-	0.17	0.15 0.12	
11/4/2009	-	1.2	0.11	4.2	2.2	-	-	-	-	-	-	-	0.94	-	-	-	0.038	4.9	0.11	-	1.8	0.48	2.8	-	-	-	-	-	0.29	-	3.6	0.035	
4/20/2010 11/11/2010	-	1.0 0.91	0.89	3.2	0.24	-	-	-	-	-	-	-	0.037	-	-	-	0.007	0.60			0.85 1.2	0.29 0.27	0.92	-	- 1	-	-	-	0.15 0.15	-	0.69	0.031 0.045	
4/22/2011	-	0.91	0.27	3.2 2.8	4.6 3.6	-	-	-	-	-	-	-	0.31	-	-	-	-	1.7	0.028		0.64	0.27	2.6 1.6	-	-	-	-	-	0.15	-	0.14	0.045	-
11/14/2011	-	0.87	1.8	3.1	6.9	-	-	-	-	-	-	-	1.1		-	-	0.009	3.8	0.009	-	1.5	0.31	2.1	-	-	-	-	0.026	0.061	-	0.082	0.031	
4/30/2012 11/5/2012	-	0.92	1.6	4.1 3.9	6.2 5.5	-	-	-	-	-	-	-	1.2 3.5		1.2	2.8	0.024	2.2			1.6 1.6	0.33 0.064	2.4 1.9	-	-	-	-	-	0.13	-	0.069	0.066	
5/7/2013		-	-	-	-	-	-	-	-	-	-	5.9	3.6	-	0.13	3.5	-	-	-	-	-	-	-	-		-			-	-	-	-	-
12/19/2013	-	0.81	3.1	3.6	6.4	-	-	-	-	-	-	3.8	3.4		0.19	3.2	<0.005	20	0.056	-	2.0	-	1.4	-	-	-	-	-	-	1.3	0.25	-	-
4/15/2014 11/3/2014	-	1.1 0.77	2.3	6.0 3.8	8.3	-	-	-	-		-	0.052 1.6	1.7 4.1	0.018 0.15	0.15	5.6 3.8	0.27	20 25	0.14	-	-	-	1.6 1.5	-	-		-	-	-	1.6 <0.005	3.9 2.2	-	-
4/6/2015	-	0.70	2.5	5.6	-	-	-	-	-	-		-	3.9	-	0.51	3.6	0.13	19	0.20	-	-	-	0.37	-	-	-		-		0.59	1.4	-	-
11/17/2015	-	0.83	2	4.1	-	-	-	-	-	-	-	-	3.6	-	0.39	2.8	0.23	17	0.13	-	2.8	-	1.6	-	-	-	-	-	0.018	-	1.7	-	-
4/14/2016 11/2/2016	-	0.64	2.8	3.9	-	-	-	-	-	-	-	-	1.6 3.0		0.43	2.1	0.089	11 11	0.19		-	-	0.68 1.2	-	-	-	-	-	-		1.5 2.2	-	-
4/24/2017	-	0.81	2.3	2.3		-	-	-	-	-	-	-	1.1	-	3.1	0.80	0.11	3.6	0.24		-	-	0.67	-	-	-	-	-	-	-	390	-	-
11/7/2017		0.72	2.4	5.2		-	-	-	-	-	-	-	3.7	-	2.4	4.3	0.22	15	0.28	-	4.8	-	4.1		-	-	-	-	2.9		2.2	-	-

Nitrate (mg/L)

 $\label{eq:NHAGQS} NH\mbox{ AGQS} = 10\mbox{ mg/L}$ $\mbox{WQCTS (Water and Fish Ingestion)} = 10\mbox{ mg/L}$

																																ater and Fish In	
								Overb Monitori	ourden ing Wells									Bed Monitori				Groundwater Seep Monitoring Stations						Surface Water onitoring Statio					Leachate Monitoring Well
Sampling Date	RFW-1	RFW-2	RFW-3	RFW-4	GZ-1U	GZ-2	GZ-3	GZ-4	GZ-5	GZ-6	GZWP-1	GZ-102	GZ-104	GZ-106	GZ-201	GZ-202A	GZ-1L	GZ-2L	GZ-3L	Giancola Residence	SW-P-2 (P-2/1P-2R Southern Spring)	GW-P-5R	SW-P-9 (P-9/1P-9R Northern Spring)	SW-1	SW-5	SW-10	SW-11	SW-12	SW-13	SW-16	SW-17	Exeter River	MW-6
5/27/1992	<0.05	<0.05	<0.05	<0.05	-	-	-	-	-	-	-	-	-		-	-	-	-	·	-	-	-	<0.05	-	-	-	-	-	-	-		-	<0.05
11/12/1992	1.35	0.36	2.15	0.38	-	-	-	-	-	-	-	-	-		-	-	-	-		-	-	-	-	-	0.34	-	-	-	-	-	-	-	
4/6/1993	0.5 <0.5	0.5	0.5 <0.5	0.5	 -	-	-	-	-	-	-		-		-	-	-	-	-	-	-	-	-	-	0.5 <0.5	-	-	-	-	-	-	-	1.5
7/1/1993 11/5/1993	0.6	<0.5 0.5	0.5	<0.5 0.5	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	0.5	-	-	-	-	-	-	-	1.5
4/14/1994	0.197	0.091	0.226	<0.03	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	<0.03	-	-	-	-	-	-	-	-
7/15/1994	<0.03	<0.03	<0.03	<0.03	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	<0.03	-	-	-	-	-	-	-	-
8/30/1994	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
9/6/1994 10/11/1994	-	-	-	-	-	-	-	-	-	-	-		-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	
11/18/1994	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
12/23/1994	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2/2/1995	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
4/12/1995 7/28/1995	0.52	<0.5 <0.5	<0.5 <0.5	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	<0.5 <0.5	-	-	-	-	-	-	-	
12/8/1995	0.17	<0.05	0.16	0.078	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	<0.05	-	-	-	-	-	-	-	
4/26/1996	0.1	<0.05	<0.05	<0.05	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	<0.05	-	-	-	-	-	-	-	
7/25/1996	0.17	<0.05	<0.05	0.07	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-		<0.05	-	-	-	-	-	-	-	
11/14/1996 4/21/1997	-	0.6 <0.05	0.47 <0.05	19 <0.05	-	-	-	-	-	-	-		-		-	-	-	-	-	-	3.2 0.34	-	0.74 2.1	0.49 1.4	-	-	-	-		-		-	-
7/22/1997	0.35	<0.05	0.06	<0.05				_	_	-	-	-	-					-	-		<0.05	-	<0.05	<0.05	_	-	_	-	-		-		
11/11/1997	0.89	<0.05	<0.05	<0.05	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	<0.05	-	<0.05	<0.05	-	-	-	-	-	-	-	-	
4/15/1998	0.46	<0.05	0.06	<0.05	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	<0.05	-		<0.05	-	-	-	-	-	-	-	-	
7/6/1998 11/16/1998	0.52	<0.05 <0.05	<0.05 0.31	5.6 <0.05	-	-	-	-	-	-	-		-		-	-	-	-	-	-	4.1 0.08	-	<0.05 <0.05	<0.05 0.12	-	-	-	-	-	-		-	-
4/19/1999	0.39	<0.05	<0.1	<0.1	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	<0.05	-	<0.05	<0.05	-	-	-	-	-	-	-	-	
7/27/1999	0.096	<0.05	0.37	<0.05	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	<0.05	-	<0.05	0.18	-	-	-	-	-	-	-	-	-
11/18/1999	0.51	<0.05	<0.05	<0.3	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	0.09	-	<0.1	<0.1	-	-	-	-	-	-	-	-	
5/5/2000 7/7/2000	2.7	0.1 <0.05	0.39 <0.05	0.1 <0.05	-		-	-	-	-	-		-		-	-	-	-	-	-	0.43	-	<0.05	0.1	-	-	-	-	-	-			
11/16/2000	2.1	0.051	0.55	<0.1	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	<0.05	-	<0.05	0.38	-	-	-	-	-	-	-	-	-
4/25/2001	0.98	<0.05	<0.05	<0.05	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	<0.05	-	0.12	<0.05	-	-	-	-	-	-	-	-	-
7/25/2001 8/9/2001	1	<0.5	<0.5	<0.5	1.3	-	-	-	-	-	-	-	-		-	-	<0.100	<0.100	0.140	-	<0.5	-	<0.5	<0.5	-	-	-	-	-	-	-	-	-
11/28/2001	1.3	0.16	0.44	3	-	-	-	-	-	-	-		-		-	-	<0.100	<0.100	0.140	-	0.26	-	-	<0.05	-	-	-	-		-	-	-	
1/17/2002	-	-	-	-	-	-	-	-	-	-	-	-			-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
4/24/2002	1	0.2	0.3	0.2	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	0.2	-	-	-	-	-	-	-	-	
11/20/2002 4/29/2003	0.8	<0.1	<0.1 0.2	<0.1	1.8	-	-	-	-	-	-		-		-	-	<0.1	<0.1	0.2	-	<0.1	-	<0.1	<0.1 0.3	-	-	-	-	-	-		-	
11/17/2003	-	<0.1	<0.1	<0.1	3.6	-	-	-	-		-	-	-				0.1	<0.1	0.2	-	<0.1	-	<0.1	<0.1	-	-	-	-	-	-	-		
4/28/2004	-	<0.1	0.3	<0.1	2.6	-	-	-	-	-	0.4	-	-		-	-	0.1	<0.1	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-	-	-	-	-	-	-	-	
11/15/2004 4/28/2005	-	<0.1	0.9	<0.1	0.8 2.0	-	-	-	-	-	0.2	-	-		-	-	0.2	<0.1 <0.1	0.2	-	<0.1	<0.1 <0.1	<0.1 <0.1	2.1 <0.1	-	-	-	-		-	-	-	
11/8/2005	-	<0.1	0.1 1.2	<0.1	1.0	-	-	-	-	-	0.2 <0.1		-		-	-	0.3	<0.1	0.1	-	0.8 <0.5	<0.1	<0.1	<0.1	-	-	-	-		-	-	-	
4/17/2006	-	<0.1	<0.1	<0.1	0.4	-	-	-	-	-	<0.1	-	-		-	-	0.2	<0.1	0.2	-	<0.1	<0.1	<0.1	0.1	-	-	-	-	-	-	-	-	-
11/20/2006	-	<0.1	<0.1	<0.1	0.2	-	-	-	-	-	<0.1	-	-		-	-	<0.1	<0.1	0.1	-	<0.1	<0.1	<0.1	<0.1	-	-	-	-		-	-	-0.1	
5/2/2007 11/14/2007	+ -	<0.1 <0.1	0.2	<0.1 <0.1	0.2 <0.1		-	-	-	-	<0.1 <0.1	-	<0.5		-		0.4	<0.1 0.2	0.1	-	<0.1 <0.1	<0.1 0.1	<0.1 <0.1	<0.1	-	-	-	-	-	-	-	<0.1 0.2	-
4/25/2008	-	<0.1	0.2	<0.1	0.2	-	-	-	-	-	<0.1	-		-	-	-	-	<0.1	-	_	<0.1	<0.1	<0.1	<0.1	-	-	-	-	<0.1	-	-	<0.1	
11/18/2008	-	<0.1	1.1	<0.1	<0.1	-	-	-	-	-	<0.1	-	0.27	-	-	-	0.2	<0.1	-	-	Dry	<0.1	<0.1	<0.1	-	-	-	-	<0.1	-	-		
4/27/2009 11/4/2009	-	<0.5 <0.5	<0.5 0.6	<0.5 <0.5	<0.5 <0.5	-	-	-	-	-	0.7	-	0.7	-	-	-	<0.5	<0.5 <0.5	<0.5	-	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5	-	-	-	-	<0.5 <0.5	-	<0.5	<0.5 <0.5	
4/20/2010	-	<0.5	1.3	<0.5	1.4	-	-	-	-	-	-	-	<0.5	-	-		-	<0.5	-	-	<0.5	<0.5	<0.5	-	-	-	-	-	<0.5	-	<0.5	<0.5	
11/11/2010	-	<0.5	1.0	<0.5	<0.5	-	-	-	-	-	-	-	0.7	-	-	-	<0.5	0.6	<0.5	-	<0.5	<0.5	<0.5	-	-	-	-	-	<0.5	-	<0.5	<0.5	
4/22/2011 11/14/2011	-	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	-	-	-	-	-	-	-	<0.5 <0.5	-	-	-	<0.5	1.0 0.8	<0.5	-	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5		-	-	-	-	<0.5 <0.5	-	<0.5 <0.5	<0.5 <0.5	· ·
4/30/2012		<0.5	<0.5	<0.5	<0.5	-	-	-	-	-	-	-	<0.5	-	-		NO.3	<0.5		-	<0.5	<0.5	<0.5	-	-	-	-	-	<0.5	-	<0.5	<0.5	
11/5/2012	-	<0.5	1.3	<0.5	<0.5	-	-	-	-	-	-	-	<0.5	-	<0.5	<0.5	<0.5	0.6		-	<0.5	<0.5	<0.5		-	-	-	-	<0.5	-	<0.5	<0.5	-
5/7/2013	-	-	-	-	-	-	-	-	-	-	-	<0.5	<0.5	-	<0.5	<0.5	-	-	-	-	-	-		-	-	-	-	-	-	-	-	- 1	-
12/19/2013 4/15/2014	-	<0.5 <0.5	<0.5 0.8	<0.5 <0.5	<0.5 <0.5	-	-	-	-	-	-	<0.5 0.8	<0.5 <0.5	<0.5	0.6	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	-	<0.5 <0.5	-	<0.5 <0.5	-	-	-	-	-	•	<0.5 <0.5	<0.5 <0.5	-	-
11/3/2014		<0.5	3.3	<0.5	-	-	-	-	-	-	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.8	1.1	-	<0.5	-	<0.5	-	-	-	-	-		1.2	<0.5	-	-
4/6/2015	-	<0.5	<0.5	<0.5	-	-	-	-	-	-	-	-	<0.5	-	0.9	<0.5	<0.5	0.9	0.5	-	-	-	<0.5	-	-	-	-	-	-	<0.5	<0.5	-	-
11/17/2015	-	<0.5	0.7	<0.5	-	-	-	-	-	-	-	-	<0.5	-	0.8	<0.5	<0.5	<0.5	0.5	-	<0.5	-	<0.5	-	-	-	-	-	<0.5	-	<0.5	- 1	-
4/14/2016 11/2/2016	-	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	-	-	-	-	-	-	-	-	<0.5 <0.5	-	<0.5 2	<0.5 <0.5	<0.5	<0.5 1.4	<0.5 1.1	-		-	<0.5 <0.5	-	-	-	-	-		-	<0.5 <0.5	-	-
4/24/2017		<0.5	<0.5	<0.5	-	-	-	-	-	-	-	-	<0.5	-	1.0	<0.5	<0.5	<0.5	<0.5	-			<0.5	-	-	-	-	-	-	-	<0.5		-
11/7/2017	-	<0.5	<0.5	<0.5	-	-	-	-	-	-	-	-	<0.5	-	1.2	<0.5	<0.5	<0.5	<0.5	-	<0.5	-	<0.5	-	-	-	-	-	<0.5	-	<0.5	-	
See last page for notes.																																	

pH (mg/L)

NH AGQS = NE WQCTS (Water and Fish Ingestion) = NE

								Overb	ourden									Bedi	rock			Grour	ndwater Seep					Su	rface Water					Leachate
								Monitor	ing Wells									Monitori	ng Wells			Monito	oring Stations					Moni	toring Stations					Monitoring Well
Sampling Date	RFW-1	RFW-2	RFW-3	RFW-4	GZ-1U	GZ-2	GZ-3	GZ-4	GZ-5	GZ-6	GZWP-1	GZ-102	GZ-104	GZ-106	GZ-201	GZ-202A	GZ-1L	GZ-2L	GZ-3L	Giancola Residence	SW-P-2 (P-2/ South Spring)	SW-P-2 (P-2/1P-2R Southern Spring)	GW-P-5R	SW-P-9 (P-9/1P-9R Northern Spring)	SW-1	SW-5	SW-10	SW-11	SW-12	SW-13	SW-16	SW-17	Exeter River	MW-6
5/27/1992	6.51	6.42	6.53	6.56	-	-	-	-	-		-	-	-	-	-	-	-	-	-		-	7.58	-	-	-	-	-	-	-		-	-	-	-
11/12/1992	7.00	6.50	6.30	6.50			-	-	-	-	-	-		-	-		-	-		-	-	-	-	-	-	6.70	-	-	-	-	-	-	-	-
4/6/1993	6.95	6.41	6.51	6.47			-	-	-	-	-	-		-	-		-	-		-	-	-	-	-	-	7.15	-	-	-	-	-	-	-	6.90
4/25/1996	6.34	7.15	6.42	6.46	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	6.72	-		-	-	- 1	- 1	-	6.84
7/25/1996	6.48	6.67	7.05	6.41	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	6.58	-		-	-	- 1	- 1	-	-
4/21/1997	-	6.70	6.70	6.60	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	6.10	7.10	-	6.60	-		-	-	-	-		-	-	-
7/22/1997	6.42	6.96	6.46	6.55	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	6.19	7.08	-	6.72	-		-	-	-	-		-	-	-
7/27/1999	6.68	6.52	6.37	6.53	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	6.92	7.04	-	7.36	-		-	-	-	-		-	-	-
4/25/2001	6.81	6.86	6.60	6.65	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	6.44	6.77	-	7.02	-		-	-	-	-		-	-	-
7/25/2001	6.40	6.61	6.51	6.43	5.90	-	-	5.80	5.90	5.50	-	-	-	-	-	-	7.10	7.40	7.10	-	7.08	7.03	-	6.63	-		-	-	-	-			-	-
8/9/2001	-	-	-	-	6.60	-	-	7.00	7.10	6.10	-	-	-	-	-	-	7.10	7.40	7.60	-	-	-	-	-	-		-	-	-	-			-	-
11/28/2001	6.22	6.41	6.40	6.26	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	6.69	6.96	-	6.90	-		-	-	-	-			-	-
4/24/2002	6.94	6.88	6.70	6.73	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	6.10	-		-	-	-	-			-	-
11/20/2002	6.19	6.29	6.26	6.42	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	5.94	-		-	-	-	-			-	-
4/29/2003	6.37	6.19	6.51	6.57	6.16	-		-	-	-	-	-	-	-	-		9.20	6.95	6.78	-	6.37	6.38	-	6.77	-	-	-				<u> </u>	 1	-	-
11/17/2003	-	6.72	6.47	6.66	6.35	-	-	-	-	-	-	-	-	-	-	-	7.26	6.70	6.80	-	6.59	6.82	-	6.88	-	-	-	-	-	-			-	-
4/28/2004	-	6.43	6.46	6.90	6.53	-	-	-	-	-	6.80	-		-	-	-	7.46	8.23	7.62	7.69	-	6.76	6.58	6.81	-				-		<u>├</u>	$\overline{}$	-	
11/15/2004	-	6.44	6.52	6.50	6.39	-	-	-	-	-	6.45	-		-	-	-	7.38	7.06	6.86	-	-	6.72	6.56	6.97	-				-		<u>├</u>	$\overline{}$	-	
4/28/2005	-	6.39	6.33	6.81	6.48	-	-	-	-	-	6.77	-		-	-	-	7.44	8.04	7.51	-	-	6.70	6.49	6.74	-				-			-	-	-
11/8/2005		6.45	6.67	6.65	6.42	-		-	-	-	6.63	-		-	-	-	7.41	6.86	6.88	-	-	7.08	6.64	7.23	-						- I		-	-
4/17/2006		6.29	6.60	6.46	6.24	-		-	-	-	6.43	-		-	-	-	6.98	7.36	6.77	-	-	6.64	6.41	7.06	7.12						- I		-	-
11/20/2006		6.10	6.35	6.46	6.23	-		-	-	-	6.34				-		7.13	7.32	7.28		-	6.46	6.33	7.11	7.62					+	<u> </u>	$\overline{}$	-	-
5/2/2007	-	6.40	6.35	6.54	6.41	-	-	-	-	-	6.50	-	-	-	-	-	-	6.90	-	-	-	6.76	6.56	6.91	6.95	-	-	-	-	-			7.09	-
11/14/2007	-	6.29	6.38	6.49	6.35	-	-	-	-	-	6.47	-	-	-	-	-	7.09	6.87	7.16	-	-	6.61	6.44	6.98	6.90	-	-	-	-	-	- 1		7.04	-
4/25/2008		6.01	5.91	6.05	6.33	-	-	-	-	-	6.64	-	-	-	-	-	6.65	-	-	-	-	6.37	6.39	6.77	6.65	-	-	-	-	6.83	- 1	-	6.71	-
11/18/2008	-	5.96	5.97	6.11	6.37	-	-	-	-	-	Dry	-	6.56	-	-	-	7.02	6.68	-	-	-	-	6.44	6.80	6.77	-	-	-	-	6.88	-	-	6.69	-
4/27/2009	-	6.00	5.89	6.08	6.26	-	-	-	-	-	6.70	-	-	-	-	-	-	6.61	-	-	-	6.38	6.41	6.73	6.81	-	-	-	-	6.88	- 1	6.69	6.76	-
11/4/2009	-	5.88	6.42	6.35	6.51	-	-	-	-	-	-	-	6.42	-	-	-	7.44	6.81	7.17	-	-	6.42	6.14	6.68	-	-	-	-	-	6.83	-	6.72	6.71	
4/20/2010	-	5.84	6.45	6.31	6.57	-	-	-	-	-	-	-	6.49	-	-	-	-	6.87	-	-	-	6.40	6.12	6.73	-	-	-	-	-	6.86	-	6.70	6.70	-
11/11/2010	-	5.83	6.51	6.41	6.56	-	-	-	-	-	-	-	6.36	-	-	-	7.31	6.77	7.13	-	-	6.39	6.08	6.56	-	-	-	-	-	6.81	-	6.77	6.63	-
4/22/2011	-	5.93	6.55	6.39	6.61	-	-	-	-	-	-	-	6.44	-	-	-	-	6.83		-	-	6.38	6.06	6.67	-	-	-	-	-	6.8	<u> </u>	6.72	6.63	-
11/14/2011	-	5.91	6.58	6.49	6.61	-	-	-	-	-	-	-	6.29	-	-	-	7.27	6.7	7.06	-	-	6.34	6.11	6.63	-	-	-	-	-	6.78	-	6.68	6.68	-
4/30/2012	-	5.96	6.38	6.41	6.38		<u> </u>	-	-	 	-	-	6.44	-			7.00	6.84	7.16	 	-	6.49	6.4	6.83	-	-	-		-	6.59	 	6.77	6.68 5.87	-
11/5/2012 5/7/2013	-	6.02	5.66	6.48	6.38		-	-	-	+ -	-	6.40	6.18 6.53	-	6.23 6.29	6.7 6.65	7.68	6.84	7.16	-	-	6.51	6.33	6.9		-	-	-	-	6.01	\vdash	6.85	5.87	
12/19/2013	-	6.34	6.60	6.81	6.81		1		-	+ :	1	6.68	6.97	-	6.55	6.79	7.91	7.16	7.21	1		6.98		7.18	-	+ :	1	1	+ :	-	7.45	7.48	-	-
11/3/2014	-	6.35	6.15	6.53	- 0.01			-		+ -		6.55	6.77	6.92	6.19	6.67	7.50	6.72	7.02		-	-	-	6.94	-	-			-	-	7.43	7.46	-	
4/6/2015	-	7.1	6.50	6.72	-	-	-	-	-	-	-	-	6.89	-	6.36	6.75	7.75	8.1	8.15	-	-	-	-	8.05	-	-	-	-	-	<u> </u>	7.41	7.46	-	-
11/17/2015	-	6.91	6.77	6.89	-	-	-	-	-	-	-	-	7.03	-	7.03	6.97	7.27	6.99	7.58	-	-	6.99	-	7.64	-	-	-	-	-	8.24	-	7.83	-	-
4/14/2016	-	6.50	6.51	6.63	-	-	-	-	-	-	-	-	6.82	-	6.39	6.78	7.17	6.99	7.78	-	-	-	-	7.48	-	-	-	-	-	-	- 1	7.46	-	-
11/2/2016	-	6.91	6.40	7.41	-	-	-	-	-	-	-	-	6.56	-	6.37	6.78	6.92	6.70	7.12	-	-	-	-	8.95	-	-	-	-	-	-		6.37	-	-
4/24/2017	-	6.56	6.30	6.68	-	-	-	-	-	-	-	-	6.73	-	6.43	7.92	7.75	12.78	7.95	-	-	-	-	7.60	-	-	-	-	-	-		7.19	-	-
4/24/2017	-	6.78	6.45	7.48	-	-	-	-	-	-	-	-	7.34	-	6.88	7.18	8.22	7.44	7.29		-	7.36	-	7.38	-	-	-	-	-	7.38	<u>├</u> . →	7.46		

See last page for notes.

P-()DBS\)21006\(\)21270\(\)(9.4.002\(\)270.27\(\)(9.1)Report\)(1037 Armual Report\(\)(1037 Armual Report\(\)(1038 Road Table 1.x/s

Selenium (mg/L)

NH AGQS = 0.05 mg/L WQCTS (Water and Fish Ingestion) = 0.170 mg/L

								Overb	ourden ing Wells									Bedr Monitori				Groundwater Seep Monitoring Stations						Surface Wate					Leachate Monitoring Well
Sampling Date	RFW-1	RFW-2	RFW-3	RFW-4	GZ-1U	GZ-2	GZ-3	GZ-4	GZ-5	GZ-6	GZWP-1	GZ-102	GZ-104	GZ-106	GZ-201	GZ-202A	GZ-1L	GZ-2L	GZ-3L	Giancola Residence	SW-P-2 (P-2/1P-2R	GW-P-5R	SW-P-9 (P-9/1P-9R	SW-1	SW-5	SW-10	SW-11	SW-12	SW-13	SW-16	SW-17	Exeter River	MW-6
5/27/1992	<0.01	<0.01	<0.01	<0.01	-		-		-									-		·	Southern Spring)		Northern Spring) <0.01										<0.01
11/12/1992	-	-	-	-	-		-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
4/6/1993	<0.01	<0.01	<0.01	<0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.01	-	-	-	-	-	-	-	<0.01
7/1/1993 11/5/1993	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-		-	-	-	-	-	-	-
4/14/1994	<0.005	<0.005	<0.005	<0.005	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.005	-	-	-	-	-	-	-	-
7/15/1994	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	
8/30/1994 9/6/1994	-	-	-	-	-	-	-	-	-	-			-		-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	<0.002 <0.002
10/11/1994	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	<0.002
11/18/1994 12/23/1994	<0.002	0.005	<0.002	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	<0.002	-	-	-	-	-	-	-	<0.01
2/2/1995	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	<0.002
4/12/1995	<0.005	<0.005	<0.005	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	<0.005	-	-	-	-	-	-	-	<0.005
7/28/1995 12/8/1995	<0.005	<0.005	0.01	0.009	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.006	-	-	-	-	-	-	-	<0.005 0.019
4/26/1996	<0.01	<0.01	<0.01	<0.01		-	-		-	-	-	-	-	-	-	-	-	-	-		-	-	-		<0.01	-				-		-	<0.013
7/25/1996	<0.007	<0.007	<0.007	<0.007	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.007	-	-	-	-	-	-	-	-
11/14/1996 4/21/1997	-	<0.005	<0.005	<0.005	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	<0.005	-	<0.005	<0.005	-	-	-	-	-	-	-	-	-
7/22/1997	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
11/11/1997 4/15/1998	- <0.005	<0.005	<0.005	<0.005	-		-	-	-	-	-	-	-	-		-	-	-		-	<0.005	-	-	0.006	- 1	-	-	-	-	-	-		-
7/6/1998	<0.005	<0.005	<0.005	<0.005	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		<0.005			-	-		-	-	-	-	-	-	-
11/16/1998	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
4/19/1999	<0.005	<0.005	<0.005	<0.005	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.005	-	<0.005	<0.005	-	-	-	-	-	-	-	-	-
7/27/1999 11/18/1999	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-
5/5/2000	<0.005	<0.005	<0.005	<0.005	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.005	-		-	-	-	-	-	-	-
7/7/2000 11/16/2000	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
4/25/2001	0.018	0.013	<0.005	<0.005	-	-	-	-	-	-	-		-		-	-	-	-	-		<0.005	-	0.012	<0.005	-		-	-	-	-	-	-	
7/25/2001	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-
8/9/2001 11/28/2001	-	-	-	-	0.0711	-	-	-	-	-	-	-	-	-	-	-	0.082	0.101	<0.034	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1/17/2002	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-		-	-	-	-	-	-	-	-	-
4/24/2002	<0.03	<0.03	<0.03	<0.03	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.03	-	-	-	-	-	-	-	-	-
11/20/2002 4/29/2003	<0.05	<0.05	<0.05	<0.05	<0.05	-	-	-	-	-	-	-	-	-	-	-	<0.05	<0.05	<0.05	-	<0.05	-	<0.05	<0.05	-		-	-	-	-	-	-	
11/17/2003	-	<0.05	0.06	<0.05	<0.05	-	-	-	-	-	-	-	-	-	-	-	<0.05	0.05	<0.05	-	-		<0.05	<0.05	-		-	-	-	-	-	-	-
4/28/2004	-	<0.05	<0.05	<0.05	<0.05	-	-	-	-	-	<0.05	-	-	-	-	-	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-	-	-	-	-	-	-	-	<u> </u>
11/15/2004 4/28/2005	-	<0.05	<0.05	<0.05	<0.05	-	-	-	-	-	<0.05	-	-	-	-	-	<0.05	<0.05	<0.05	-	<0.05	<0.05	<0.05	<0.05	-		-	-	-	-	-	-	-
11/8/2005	-	<0.05	<0.05	<0.05	<0.05	-	-	-	-	-	<0.05		-	-	-	-	<0.05	<0.05	<0.05	-	<0.05	<0.05	<0.05	<0.05	- 1	-	-	-	-	-	-	-	<u> </u>
4/17/2006 11/20/2006	-	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05		-	-	-	-	<0.05 <0.05	-	-			-	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	-	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	0.13 <0.05	-	-	-	-	-	-	-	-	-
5/2/2007		<0.05	<0.05	<0.05	<0.05		-				<0.05		-		-	-	-	<0.05			<0.05	<0.05	<0.05	<0.05								<0.05	
11/14/2007	-	<0.05	<0.05	<0.05	<0.05	-	-	-	-	-	<0.05	-	-	-	-	-	<0.05	<0.05	<0.05	-	<0.05	<0.05	<0.05	<0.05	-	-	-	-	-	-	-	<0.05	-
4/25/2008 11/18/2008	-	<0.05	<0.05	<0.05	<0.05	-	-	-	-	-	- Dry	-	<0.002	-	-	-	<0.05	<0.05	-	-	- Dry	<0.05	<0.05	-	-	-	-	-	<0.05	-	-	<0.05	<u> </u>
11/4/2009	-	<0.001	<0.001	<0.001	-	-	-	-	-	-	- -	-	<0.002	-	-	-	<0.001	<0.001	<0.001	-	<0.001	<0.001	<0.001	-	-	-	-	-	<0.001	-	<0.001	<0.001	-
4/20/2010	-			-0.001		-	-	-	-	-	-	-		-	-	-		-		-				-	- 1	-	-	-		-	-	-	-
11/11/2010 4/22/2011	-	<0.001	<0.001	<0.001	<0.001	-	-	-	-	-	-	-	<0.001		-	-	<0.001	<0.001	<0.001	-	<0.001	<0.001	<0.001	-	-	-	-	-	<0.001	-	<0.001	<0.001	-
11/14/2011	-	<0.001	<0.001	<0.001	<0.001		-	-	-	-		-	<0.001	-	-	-	<0.001	<0.001	<0.001	-	<0.001	<0.001	<0.001	-	-		-	-	<0.001	-	<0.001	<0.001	-
4/30/2012 11/5/2012	-	<0.0001	<0.0001	<0.0001	<0.001	-	-	-	-	-	-	-	<0.0001	-	- 0.001	- <0.001	-0.001	<0.0001	-	-	<0.0001 <0.001	<0.0001 <0.001	<0.0001 <0.001	-	-	-	-	-	<0.0001	-	<0.0001	<0.0001	-
5/7/2013	-	<0.001	<0.001	<0.001	<0.001	-	-	-	-	-	-	<0.001	<0.001 <0.001	-	<0.001	<0.001 <0.001	<0.001	<0.001	-	-	<0.001	<0.001	<0.001	-	-			-	<0.001	-	<0.001	<0.001	-
12/19/2013	-	<0.001	<0.001	<0.001	<0.001	-	-	-	-	-	-	<0.001	<0.001	-	<0.001	<0.001	<0.001	<0.001	<0.001	-	<0.001	-	<0.001	-	-	-	-	-	-	<0.001	<0.001	-	-
4/15/2014 11/3/2014	-	-	-	-	-	-	-	-	-	-	-	<0.001	-	<0.001	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.001 <0.001	-	-	-
4/6/2015	-	-	-		-		-	-	-	-	-		-		-	-	-	-	-	-	-		-	Ė					-		-	-	-
11/17/2015	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.001	-	-	-	-	-	-	-	<0.001	-	-	-	-
4/14/2016 11/2/2016	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
4/24/2017	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- 1	-	-	-	-	-	-	-	-
11/7/2017	-	<0.001	<0.001	<0.001	-	-	-	-	-	-	-	-	<0.001	-	0.002	<0.001	<0.001	<0.001	<0.001	-	0.003	-	<0.001	-	-		-	-	<0.001	-	<0.001	-	-

P/LOBIS/21/00/61/21/70/194-002/21/70 19/Report/LODIS Road TABLE 1.x/s

NH AGQS = 0.10 mg/L WQCTS (Water and Fish Ingestion) = 0.05 mg/L

									burden ring Wells										drock ring Wells			Groundwater Seep Monitoring Stations						Surface Water onitoring Station	ns			Leachat Monitoring
Sampling Date	RFW-1	RFW-2	RFW-3	RFW-4	GZ-1U	GZ-2	GZ-3	GZ-4	GZ-5	GZ-6	GZWP-1	GZ-102	GZ-104	GZ-106	GZ-201	GZ-202A	GZ-1L	GZ-2L	GZ-3L	Giancola Residence	SW-P-2 (P-2/1P-2R Southern Spring)	GW-P-5R	SW-P-9 (P-9/1P-9R Northern Spring)	SW-1	SW-5	SW-10	SW-11	SW-12	SW-13	SW-16	SW-17 Exeter Rive	r MW-6
5/27/1992	<0.02	<0.02	<0.02	<0.02	-		-	-	-	-	-	•	-	-	-	-	•	-	-	-	-	-	<0.02	-	-	-		-				<0.02
/12/1992	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-
/6/1993 /1/1993	<0.01	<0.01	<0.01	<0.01	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	<0.01	-	-	-	-	-		<0.0
1/5/1993	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-		-
/14/1994	<0.007	<0.007	<0.007	<0.007	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.007	-	-	-	-	-		
7/15/1994	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
3/30/1994	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		0.0
9/6/1994 0/11/1994	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		0.0
1/18/1994	0.06	0.03	0.04		-	-	-			-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.04	-		-	-	-		0.1
2/23/1994	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		<0.
2/2/1995	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		0.0
4/12/1995 7/28/1995	<0.05	<0.05	<0.05	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		<0.05	-	-	-	-	-		<0. <0.
12/8/1995	<0.008	<0.008	<0.008	<0.008	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.008	-	-	-	-	-		0.0
1/26/1996	<0.008	<0.008	<0.008	<0.008	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.008	-	-	-	-	-		<0.0
7/25/1996	<0.003	<0.003	<0.003	<0.003	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.003	-	-	-	-	-		-
1/14/1996 4/21/1997	-	<0.001	<0.001	<0.001	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.001	-	<0.001	<0.001	-	-	-	-	-	-		
7/22/1997	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
1/11/1997	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
4/15/1998	<0.001	0.019	<0.001	0.005	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.001	-	-	<0.001	-	-	-	-	-	-		
7/6/1998 1/16/1998		-	-	-	-	-	-	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	-		
1/19/1999	<0.001	<0.001	<0.001	<0.001	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.001	-	0.001	<0.001	-	-	-	-	-	-		
7/27/1999	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
1/18/1999	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
5/5/2000 7/7/2000	0.005	0.002	0.005	0.005	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-		-	0.004	-					-		
1/16/2000	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
4/25/2001	<0.001	<0.001	<0.001	<0.001	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.001	-	<0.001	<0.001	-	-	-	-	-	-		
7/25/2001 8/9/2001	-	-	-	-	<0.013	-	-	-	-	-	-	-	-	-	-	-	<0.013	<0.013	<0.013	-	-	-	-	-	-	-	-	-	-	-		
1/28/2001	-	-	-	-	<0.013	-	+ -			-	-	-	-	-	-	-	<0.013	<0.013	<0.013	-	-	-	-	-	-					-		
1/17/2002	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-		
4/24/2002	<0.005	<0.005	<0.005	<0.005	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.005	-	-	-	-	-	-		
1/20/2002 4/29/2003	<0.007	<0.007	<0.007	<0.007	<0.007	-	-	-	-	-	-	-	-	-	-	-	<0.007	<0.007	<0.007	-	<0.007	-	<0.007	<0.007	-	-	-	-	-	-		
1/17/2003	-	<0.007	<0.007	<0.007	<0.007		-	-	-	-	-	-	-	-	-	-	<0.007	<0.007	<0.007	-	-	-	<0.007	<0.007	-	-			-	-		<u> </u>
4/28/2004	-	<0.007	<0.007	<0.007	<0.007	-	-	-	-	-	<0.007		-	-	-	-	<0.007	<0.007	<0.007	<0.007	<0.007	<0.007	<0.007	<0.007	-	-	-	-	-	-		
1/15/2004	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
1/28/2005 11/8/2005	-	<0.007	<0.007 <0.007	<0.007 <0.007	<0.007 <0.007	-	-	-	-	-	<0.007	-	-	-	-	-	<0.007	<0.007 <0.007	<0.007 <0.007	-	<0.007 <0.007	<0.007 <0.007	<0.007 <0.007	<0.007 <0.007		-	-		-	-		
4/17/2006	-	<0.007	<0.007	<0.007	<0.007	-	-	-	-	-	<0.007	-	-	-	-	-	<0.007	<0.007	<0.007	-	<0.007	<0.007	<0.007	<0.007	-	-	-	-	-	-		<u> </u>
1/20/2006	-	<0.007	<0.007	<0.007	<0.007	-	-		-		<0.007	-	-	-	-	-	<0.007	<0.007	<0.007	-	<0.007	<0.007	<0.007	<0.007	-	-	-	-	-	-		
5/2/2007	-	<0.007	<0.007	<0.007	<0.007	-	-	-	-	-	<0.007	-	-	-	-	-	-	<0.007	-	-	<0.007	<0.007	<0.007	<0.007	-	-	-	- 1	-	-	- <0.007	
1/14/2007 4/25/2008	-	<0.007	<0.007	<0.007	<0.007	-	-	-	-	-	<0.007	-	-	-	-	-	<0.007	<0.007	<0.007	-	<0.007	<0.007	<0.007	<0.007	-	-	-		-	-	- <0.007	<u> </u>
1/18/2008		<0.007	<0.007	<0.007	<0.007	-	-	-	-	-	Dry	-	<0.001	-		-	<0.007	<0.007	-	-	Dry	<0.007	<0.007	-		-	-	-	<0.007	-	- <0.007	1
11/4/2009	-	<0.001	<0.001	<0.001	<0.001	-	-	-	-	-	-	-	<0.001	-	-	-	<0.001	<0.001	<0.001	-	<0.001	<0.001	<0.001	-	-	-	-	-	<0.001	-	<0.001 <0.001	
4/20/2010	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-			-	-]	-	-	-		-		
1/11/2010 4/22/2011	-	<0.001	<0.001	<0.001	<0.001	-	-	-	-	-	-		<0.001	-	-	-	<0.001	<0.001	<0.001	-	<0.001	<0.001	<0.001	-		-	-		<0.001	-	<0.001 <0.001	
1/14/2011	-	<0.001	<0.001	<0.001	<0.001	-	-	-	-	-	-	-	<0.001	-	-	-	<0.001	<0.001	<0.001	-	<0.001	<0.001	<0.001	-	-	-	-	-	<0.001	-	<0.001 <0.001	
/30/2012	-	<0.001	<0.001	<0.001	<0.001	-	-	-	-	-	-	-	<0.001	-	-	-	-	<0.001	-	-	<0.001	<0.001	<0.001	-	-	-	-	-	<0.001	-	<0.001 <0.001	
1/5/2012	-	<0.001	<0.001	<0.001	<0.001	-	-	-	-	-	-	-	<0.001	-	<0.001	<0.001	<0.001	<0.001	-	-	<0.001	<0.001	<0.001	-	-	-	-	-	<0.001	-	<0.001 <0.001	
5/7/2013 2/19/2013	-	<0.001	<0.001	<0.001	<0.001	-	-	-	-	-	-	<0.001	<0.001 <0.001	-	<0.001	<0.001 <0.001	<0.001	<0.001	<0.001		<0.001	-	<0.001	-		-	-		-	<0.001	<0.001	
/15/2014	-	-	-	-	-	-	-	-	-	-	-	<0.001	-	<0.001	-	-	-	-	-	-	-	-	-	-	-	-		-	-	<0.001		†
1/3/2014	-	-	-	-	-	-	-	-	-	-	-	<0.001	-	<0.001	-	-	1	-	-	-	-	-	-	-	-	-	-	-	-	<0.001	-	
4/6/2015	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-]	-	-	-		-		
1/17/2015 /14/2016	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.001	-	-	-	-		-		<0.001	-		
1/2/2016		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-		
/24/2017	-	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_		-	-			-		
/7/2017	-	< 0.001	<0.001	< 0.001	-	-	-	-	-	-	-	-	<0.001	-	< 0.001	< 0.001	<0.001	< 0.001	< 0.001	-	<0.001	-	< 0.001	-	-	-	-	-	< 0.001	-	<0.001 -	

PyUpi8s/21000/s/1270/Upi 2002/27/02/29/Report/2017 Annual Report/Cross Road Table 1 Julis

Specific Conductance (μS/cm)

NH AGQS = NE WQCTS (Water and Fish Ingestion) = NE

									rburden oring Wells										lrock ing Wells				vater Seep ng Stations						face Water oring Stations					Leachate Monitoring Well
Sampling Date	RFW-1	RFW-2	RFW-3	RFW-4	GZ-1U	GZ-2	GZ-3	GZ-4	GZ-5	GZ-6	GZWP-1	GZ-102	GZ-104	GZ-106	GZ-201	GZ-202A	GZ-1L	GZ-2L	GZ-3L	Giancola Residence	SW-P-2 (P-2/ Southern Spring)	SW-P-2 (P-2/1P-2R Southern Spring)	GW-P-5R	SW-P-9 (P-9/1P-9R Northern Spring)	SW-1	SW-5	SW-10	SW-11	SW-12	SW-13	SW-16	SW-17	Exeter River	
5/27/1992	150	370	910	1,400	-	-	-				-	-	-	-	-		-	-	-		-	510	-	-	-	-	-	-		-	-		-	7,500
11/12/1992	130	347	858	1,270		-	-		-	-	-		-	-	-			-			-	_	-	-	-	630	-	-	-				 1	
4/6/1993	180	340	699	855					_		-		-								-	-	-	-	-	148							<u> </u>	6,790
7/1/1993	134	368	991	1,350		_			-													_	-		-	721							<u>├</u>	
11/5/1993	136	352	943	1,310					_		-		-								-	-	-	-	-	727							<u> </u>	5,830
4/14/1994	69	350	710	958					_				-								-	_	-		-	280							<u> </u>	-
7/15/1994	77	335	740	1,200									-								-	-	-	-	-	665							 	
11/18/1994	140	340	800	-									-									_			_	800							 	
7/22/1997	189	1,024	202	156					 	-	-	_									1,274	1,107	-	166	-	-		_		_			+	
7/22/1999	117	325	1,076	1,100																	615	1,045	-	610	-	-							\vdash	
4/25/2001	261	327	887	847																	314	274	-	371	-	-							\vdash	
7/25/2001	229	301	1,390	982	810			504	296	805							530	290	585		131	494	-	261	-								\vdash	
8/9/2001	- 223	301	1,330	302	662			435	225	003							603	769	279		- 131	454	-	201	-								\vdash	
11/28/2001	590	387	1,610	984	002		-	433	223	-		-		-		-	003	703	2/3		470	477	-	398	-		-	-		-	-	لنے	\vdash	
4/24/2002	266	349	912	984	-		-	-	-	-	-	-		-	-	-	-	-	-	-	470	4//	-	398	-	-	-	-	-	-	-	لنے	\vdash	
11/20/2002	192	355		782	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		291		-	-	-	-	-	-	لــنـــا	\vdash	
		94	822 1.003		-	-	-	-	-	-	-	-	-	-	-	-	586	-		-	259	573	-	140	-	-	-	-	-	-	-		├	-
4/29/2003	535		,	431	346	-	-	-	-	-	-	-	-	-	-	-		696	224	-			-		-	-	-	-	-	-	-		-	-
11/17/2003	-	117	968	412	362	-	-	-	-	-	-	-	-	-	-	-	613	712	242	-	230	508	-	103	-	-	-	-	-	-	-		-	-
4/28/2004	-	542	1,017	760	405	-	-	-	-	-	936	-	-	-	-	-	596	553	382	342	-	247	270	762	-	-	-	-	-	-	-		<u> </u>	
11/15/2004	-	226	1,262	794	251	-	-	-	-	-	580	-	-	-	-	-	436	402	204	-	-	199	180	406	-	-	-	-	-	-	-			
4/28/2005	-	558	1,093	717	390	-		-	-	-	909		-	-	-	-	559	561	366		-	240	235	723	-	-	-	-	-	-	-		<u> </u>	
11/8/2005	-	268	1,330	905	554	-	-	-	-	-	855	-	-	-	-	-	623	711	284	-	-	265	397	581	-	-	-	-	-	-	-		لــنــــل	
4/17/2006	-	205	1,231	606	301	-	-	-	-	-	548	-	-	-	-	-	393	324	218	-	-	170	255	464	320	-	-	-	-	-	-	'	┷	
11/20/2006	-	274	796	756	1,050	-	-	-	-	-	718	-	-	-	-	-	582	308	257	-	-	197	363	442	113	-	-	-	-	-	-	'		
5/2/2007	-	358	603	707	508	-	-	-	-	-	121	-	-	-	-	-	-	627	-	-	-	308	363	517	347	-	-	-	-	-	-	'	119	
11/14/2007	-	303	633	715	510	-	-	-	-	-	975	-	-	-	-	-	525	605	229	-	-	217	344	485	208	-	-	-	-	-	-	'	97	
4/25/2008	-	367	681	856	700	-	-	-	-	-	913	-	-	-	-	-	-	668	-	-	-	325	246	517	257	-	-	-	-	165	-	'	155	
11/18/2008	-	341	634	871	765	-	-	-	-	-	-	-	417	-	-	-	487	677	-	-	-	-	255	492	249	-	-	-	-	137	-	'	131	-
4/27/2009	-	367	636	835	712	-	-	-	-	-	938	-	-	-	-	-	-	625	-	-	-	317	226	502	117	-	-	-	-	131	-	248	130	-
11/4/2009	-	350	1,062	1,070	338	-	-	-	-	-	-	-	607	-	-	-	668	554	217	-	-	330	264	481	-	-	-	-	-	114	-	262	106	-
4/20/2010	-	347	1,071	1,019	321	-	-	-	-	-	-	-	618	-	-	-	-	568	-	-	-	322	249	446	-	-	-	-	-	105	-	250	93	-
11/11/2010	-	344	1,138	1,048	322	-	-	-	-	-	-	-	592	-	-	-	683	561	202	-		338	246	456		-	-	-	-	119	-	240	98	-
4/22/2011	-	339	1033	987	337	-	-	-	-	-	-	-	641	-	-	-	-	554	-	-		308	228	461	-	-	-	-	-	96	-	227	67	-
11/14/2011	-	267	628	692	416	-	-	-	-	-	-	-	568	-	-	-	515	626	214	-	-	304	234	422	-	-	-	-	-	174	-	212	151	
4/30/2012	-	290	918	844	301	-	-	-	-	-	-	-	509	-	-	-	-	500	-	-	-	288	251	426	-	-	-	-	-	133	-	71	92	-
11/5/2012	-	248	467	703	286	-	-	-	-	-	-	-	546	-	421	649	446	500	228	-	-	231	212	408	-	-	-	-	-	151	-	88	100	-
5/7/2013	-	-	-	-	-	-	-	-	-	-	-	559	579	-	449	691	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- !		
12/19/2013	-	346	880	808	595	-	-	-	-	-	-	614	588	- 220	578	570	605	819	221	-	-	339	-	498	-	-	-	-	-	-	496	520	<u> </u>	
11/3/2014 4/6/2015	-	344 306	612 482	786 786	-	-	 	+ -	+ -	-	-	547	688 571	329	676 828	610 629	583 571	839 897	241 834	<u> </u>	-	-	-	577 275	-	-	-	-	<u> </u>	-	528 712	510 478	┝╌┩	
11/17/2015		235	482	537	-		+ :	+ :	+ :	+ :		-	495	-	625	482	404	239	155	 	-	239	 	410	-	+ :-			1	167	/12	478 345	\vdash	
4/14/2016		211	381	537	-				+ -				543	-	543	411	452	698	195.7		-	-	-	292			-	-		-		407	\vdash	-
11/2/2016	_	277	435	632	-	-	-	-	-	-	-	-	538	-	762	383	490	518	190	-	-	-	-	518	-	-	-	-	-	-	-	392	<u> </u>	-
4/24/2017	-	374	620	623	-	-	-	-	-	-	-	-	628	-	738	546	628	4,160	172.7	-	-	-	-	473	-	-	-	-	-	-	-	529		-
11/7/2017	-	288	632	828	-	-		-	-	-	-		600	-	929	535	617	1,058	236	-	-	369	-	636		<u> </u>	-	-	-	374	-	494	<u> </u>	

11/7/2017 -See last page for notes.

PyUpi8s/21000/s/1270/U4 0202170 2/9/Report/2017 Annual Report/Cors Road Table 1 Julis

Total VOCs (mg/L)

									burden ring Wells									Bed Monitori				Groundwater Seep Monitoring Stations						Surface Water onitoring Station					Leachate Monitoring Well
Sampling Date	RFW-1	RFW-2	RFW-3	RFW-4	GZ-1U	GZ-2	GZ-3	GZ-4	GZ-5	GZ-6	GZWP-1	GZ-102	GZ-104	GZ-106	GZ-201	GZ-202A	GZ-1L	GZ-2L	GZ-3L	Giancola Residence	SW-P-2 (P-2/ South Spring)	GZ-P-5R	SW-P-9 (P-9/1P-9R Northern Spring)	SW-1	SW-5	SW-10	SW-11	SW-12	SW-13	SW-16	SW-17	Exeter River	MW-6
5/27/1992	BDL	BDL	BDL	6	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	11,122
11/12/1992 4/6/1993	BDL BDL	BDL BDL	BDL BDL	3.4 BDL	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	BDL BDL	-	-	-	-	-	-	-	1,338.6
7/1/1993	BDL	BDL	25.17	5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	BDL		-	-		-	-	-	-
11/5/1993	BDL	BDL	BDL	BDL	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	BDL	-	-	-		-	-	-	154.6
4/14/1994 7/15/1994	BDL BDL	BDL BDL	3.5 BDL	17 7.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	BDL BDL	-	-	-		-	-		
8/30/1994	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-		-	-	- T	697.1
9/6/1994	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	801.5
10/11/1994	- BDL	- BDL	6.3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- BDL	-	-	-		-	-	- 	731.5
12/23/1994	-	- BDL	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	- BDL	-	-	-	-	-	-	-	1,443
2/2/1995	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	283.4
4/12/1995	BDL	BDL	BDL	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	BDL DA	-	-	-		-	-	- 	235.5 260.3
7/28/1995 12/8/1995	BDL BDL	BDL BDL	DA 4	11	-			-	1	-	-				-	-	-	-	-	-	-	-	-	-	4	-		-	-	-			201.5
4/26/1996	BDL	BDL	14.2	39.9	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	BDL	-	-	-	-	-	-		2,279.6
7/25/1996 11/14/1996	BDL	BDL BDL	4.1 4.7	49.4 332.2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- BDL	-	- BDL	- BDL	BDL	-	-	-	-	-	-		-
4/21/1997	-	BDL	2.9	24.1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	BDL	-	BDL	BDL	-	-	-	-	-	-			-
7/22/1997	BDL	BDL	3	BDL	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	BDL	-	BDL	BDL	-	-	-	-	-	-	-	-	-
11/11/1997 4/15/1998	4.6 BDL	BDL 3	BDL BDL	26.8 27	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	BDL 11	-	BDL	BDL BDL	-	-	-	-	-	-			
7/6/1998	-	4	BDL	93.7	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	8.2	-	2.1	BDL	-	-		-	-	-			
11/16/1998	DA	19.9	DA	27.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	6.2	-	DA		-		-	-	-	-	-	-	-
4/19/1999 7/27/1999	BDL BDL	BDL BDL	2.8 BDL	7.5 4.7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	BDL BDL	-	2.4 BDL	BDL BDL	-	-	-	-		-	-	- 	-
11/18/1999	BDL	BDL	4.6	BDL	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	BDL	-	2.1	BDL	-	-	-	-	-	-	-	-	-
5/5/2000	BDL	BDL	BDL	10.6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	BDL	-	-	-	-	-	-	-	-	-
7/7/2000 11/16/2000	BDL	BDL BDL	BDL BDL	3.8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	BDL BDL	-	BDL BDL	BDL BDL	-	-	-	-	-	-	-		-
4/25/2001	BDL BDL	BDL	2.1	6.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	76	-	BDL	BDL	-		-	-		-	-		
7/25/2001	BDL	BDL	BDL	10	BDL	-	-	BDL	BDL	BDL	-	-	-	-	-	-	17	BDL	BDL	-	BDL	-	BDL	BDL	-	-	-	-	-	-	-	-	-
8/9/2001 11/28/2001	- BDL	- BDL	- BDL	- 6	BDL -	-	-	BDL	BDL	BDL	-	-		-	-	-	3.1	2	BDL -	-	- BDL	-	- BDL	- BDL	-	-	-	-		-	-	- 	-
1/17/2002	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-		-	-	-	-	-	-	BDL				-		-			-
4/24/2002	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
11/20/2002 4/29/2003	BDL	BDL	BDL	11	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	BDL	-	-	-	-	-	-	-		
11/17/2003	-	BDL	BDL	2	BDL	-	-	-	-	-	-	-	-	-	-	-	BDL	3	BDL	-	BDL	-	BDL	BDL	-	-	-	-	-	-			-
4/28/2004	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	- 1	-	-
11/15/2004 4/28/2005	-	BDL	BDL	5	BDL	-	-	-	<u> </u>	-	BDL	-	-	-	-	-	BDL	BDL	BDL	-	10	BDL	BDL -	BDL	-		-	-	-	-	-		
11/8/2005	-	BDL	BDL	2.2	BDL	-	-	-	-	-	BDL	-	-	-	-	-	BDL	BDL	BDL	-	8.7	BDL	BDL	14	-	-	-	-	-	-			
4/17/2006	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	
11/20/2006 5/2/2007	-	BDL -	3	BDL -	BDL -	-	-	-	-	-	-	-	-	-	-	-	BDL -	23	BDL -	-	19	BDL -	- 21	BLD -	-	-	-	-	-	-	-	- +	
11/14/2007	-	BDL	BDL	BDL	BDL	-	-		-	-	8	-	-	-	-	-	BDL	BDL	BDL	-	BDL	BDL	14	BDL		-		-	-			BDL	
4/25/2008	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
11/18/2008 11/4/2009	-	BDL BDL	BDL BDL	BDL BDL	BDL BDL	-	-	-	-	-	13	-	2.5 BDL	-	-	-	BDL BDL	BDL BDL	- BDL	-	Dry BDL	BDL BDL	4 BDL	BDL BDL	-	-	-	-	BDL BDL	-	- BDL	 	-
4/20/2010		-	-	-	-		-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
11/11/2010	-	BDL	BDL	BDL	BDL	-	-	-	-	-	-		BDL	-	-		BDL	BDL	BDL	-	BDL	BDL	BDL	-	-	-	-	-	BDL	- 1	BDL	BDL	-
4/22/2011 11/14/2011	-	- BDL	- BDL	- BDL	- BDL	-	-	-	-	-	-	-	- BDL	-	-	-	- BDL	- BDL	- BDL	-	- BDL	- BDL	21	-	-	-	-	-	- BDL	-	- BDL	- BDL	-
4/30/2012		BDL	BDL	BDL	BDL			-	-	-	-	-	BDL		-	-	-	BDL	-	-	1	BDL	BDL	-	-			-	BDL	-	BDL	BDL	-
11/5/2012	-	BDL	BDL	BDL	BDL		-	-	-	-	-		BDL	-	BDL	BDL	BDL	BDL		-	BDL	BDL	3	-	-	-	-	-	BDL	-	BDL	BDL	-
5/7/2013 12/19/2013	-	- BDL	- BDL	- BDL	- BDL	-	-	-	-	-	-	BDL BDL	BDL BDL	-	BDL BDL	2	- BDL	- BDL	- BDL	-	- 8	-	- 11	-	-	-	-	-	-	- BDL	- BDL	-	-
4/15/2014	-	-	-	-	-	-	-	-	-	-	-	BDL	- BUL	BDL	-	-	- BDL	-	- BUL	-	-	-	-	-	-	-	-	-	-	BDL	-	-	-
11/3/2014	-	-	-	-	-		-	-	-	-	-	BDL	-	BDL	-			-	-	-	-	-	-	-	-	-	-	-	-	BDL	-		-
4/6/2015 11/17/2015	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- BDL	-	-	-	-	-	-	-	- BDL	-	-	-	-
4/14/2016	-	-	-	-	-	-	-	-	1	-	-		-	-	-	-	-	-	-	-	- BDL	-	-	-	-	-	-	-	- DUL	-			
11/2/2016	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-		-
4/24/2017 11/7/2017	-	-	-		-	-	-	-	-	-	-	-	- BDL	-	- BDL	1	- PDI	- PDI	- BDL	-	- BDL	-	- 66	-	-	-	-	-	10	-	- BDL	-	-
See last page	-	BDL	1	BDL	-		_				-	-	BUL	-	BUL	1	BDL	BDL	BUL	-	BUL		00			-			10	-	BUL		-

TKN (mg/L)

NH AGQS = NE WQCTS = NE

									rburden oring Wells										Irock ring Wells			Groundwater Seep Monitoring Stations						Surface Wate					Leachate Monitoring Well
Sampling Date	RFW-1	RFW-2	RFW-3	RFW-4	GZ-1U	GZ-2	GZ-3	GZ-4	GZ-5	GZ-6	GZWP-1	GZ-102	GZ-104	GZ-106	GZ-201	GZ-202A	GZ-1L	GZ-2L	GZ-3L	Giancola Residence	SW-P-2 (P-2/ South Spring)	GZ-P-5R	SW-P-9 (P-9/1P-9R Northern Spring)	SW-1	SW-5	SW-10	SW-11	SW-12	SW-13	SW-16	SW-17	Exeter River	MW-6
5/27/1992	0.5	0.5	1.2	8.2		-					-	-	-			-	-				-	-	-	-		-	-	-		-		-	150
11/12/1992 4/6/1993	0.665 2.09	0.904 1.39	0.477 1.39	7.50 7.65	-	-	-	-	-		-		-		-		-	-	-	-	-	-	-	-	0.425 1.39	-	<u> </u>	-		-	-		207
7/1/1993	<1.0	<1.0	24	10	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	9.1	-	-	-		-	-	-	-
11/5/1993	0.164	0.164 0.241	0.789 1.24	8.24 7.08	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	2.2 0.685	-	-	-	-	-	-	-	213
7/15/1994	0.317	0.099	0.404	6.47	-	-	-		-		-	-	-		-	-	-	-	-	-	-	-	-	-	0.343	-	-	-		-	-	-	-
8/30/1994	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-		-
9/6/1994 10/11/1994		-	-	-	-	-	-		-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
11/18/1994	-	-		-	-	-	-		-	-	-	-	-			-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-
12/23/1994 2/2/1995	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
4/12/1995	-	-		-	-	-	-		-	-	-	-	-			-	-	-	-	-	-	-	-	-	-	-	-	-		-	-		-
7/28/1995 12/8/1995	1.64 0.56	<1 0.31	3.47	7.2	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	<1 8.7	-		-	-	-	-	-	-
4/26/1996	<1	0.24	2.5	1.3	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	0.28	-	-	-		-	-	-	-
7/25/1996 11/14/1996	0.05	0.15	2.6	7.8 19	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.12	-	0.74	0.52	1.4	-	-	-	-	-	-	-	-
4/21/1997	-	0.61	1.5	14	-	-	-		-	-	-	-	-			-	-	-	-	-	0.34	-	2.1	1.4	-	-	-	-		-	-	-	-
7/22/1997 11/11/1997	0.27	0.61 1.9	1.29 0.2	10.7 0.2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		2.45 0.4	-	3.36 1.5	0.44	-	-	-	-	-	-	-	-	-
4/15/1998	<0.1	0.95	1.5	2.7	-	-	-	-	-	-	-	-	-			-	-	-	-	-	1.5	-	-	1.1	-	-	-	-		-	-	-	-
7/6/1998	2.2	1.8 0.27	1.4	2.9 6.3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	3.2 0.16	-	4.3 0.47	0.3 3.6	-	-	-	-	-	-	-	-	-
4/19/1999	<0.5	<0.5	1.6	4.1	-	-	-	-	-	-	-		-	-		-		-	-	-	0.6	-	<0.5	<0.5	-	-	-	-	-	-	-		-
7/27/1999 11/18/1999	<0.01	<0.01 <0.5	1.9 5.3	5.4 4.3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1.3 <0.5	-	1.5 2.4	0.8	-	-	-	-	-	-	-	-	-
5/5/2000	<0.5	<0.5	2.7	5.4	-	-	-	-	-	-	-		-	-		-		-	-	-	-	-	-	<0.5	-	-	-	-	-	-	-		-
7/7/2000 11/16/2000	<0.5 1.3	<0.5 0.5	3.5 2.5	3.4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.5	-	0.5 4.1	<0.5 45.2	-	-	-	-	-	-	-	-	-
4/25/2001	0.7	ND	1.8	5	-		-	-	-	-	-		-	-		-		-	-	-	4	-	5	2.2	-	-		-	-	-	-		-
7/25/2001 8/9/2001	0.8	<0.3	1.1	4.3	-	-	-	-	-	-	-	-	-			-	-	-	-	-	-	-	-	16 -	-	-	-	-		-	-		-
11/28/2001	0.6	0.3	1.2	4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.4	-	-	77	-	-	-	-	-	-	-	-	-
1/17/2002 4/24/2002	0.4	0.2	1.1	3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.8	-	-	-	-	-	-	-	-	-
11/20/2002	0.4	0.5	1.3	3.5	-	-	-	-	-	-	-		-	-		-		-	-	-	-	-	-	0.8	-	-	-	-	-	-	-		-
4/29/2003 11/17/2003	<0.3	<0.3	1.2	3.8 2.6	0.4 1.1	-	-	-	-	-	-	-	-	-		-	1.1	0.5 3.1	<0.3	-	1.3	-	1.1 3.5	<0.3 0.4	-	-	-	-	-	-	-		-
4/28/2004		5.0	0.8	2.8	1.2	-	-	-	-	-	2.0	-	-	-		-	0.4	3.0	<0.3	<0.3	5.1	1.2	1.5	0.7	-	-	-	-	-	-	-	-	-
11/15/2004 4/28/2005	-	0.8	2.2 0.5	3.2 1.9	0.4	-	-	-	-		3.5 1.5	-	-			-	<0.3 <0.3	0.8	<0.3	-	3.9 4.3	<1.5 0.4	2.5 1.8	1.2 0.7	-	-	-	-		-	-		-
11/8/2005	-	0.5	0.5	6.2	0.4	-	-	-	-	-	1.7	-	-	-	-	-	<0.3	14.7	0.3	-	5.8	1.2	5.1	1.2	-	-	-	-	-	-	-	-	-
4/17/2006 11/20/2006	-	0.3 1.3	0.6 1.7	5.4 6.2	0.6 <1	-	-	-	-		2.4	-	-			-	0.3 <1	3.5 14	1.1	-	12.1 77	6.0	4.9 110	20.0 <1	-	-	-	-		-	-		-
5/2/2007	-	<0.5	0.7	4	<0.5	-	-	-	-		3.9	-	-			-	-	1.5	-	-	36	2.1	7	<0.5	-	-	-	-	-	-	-	<0.5	
11/14/2007 4/25/2008	-	<0.5 <0.5	<0.5 1.1	3.9 3.6	0.5	-	-	-	-	-	1.3	-	0.6	-	-	-	<0.5	<0.5 <0.5	1.0	-	17 1.9	2.1 0.9	7.1 0.8	1.4 <0.5	-	-	-	-	<0.5	-	-	1.0 <0.5	-
11/18/2008	-	<0.5	0.6	6.1	<0.5	-	-	-	-	-	2.7	-	0.91	-		-	<0.5	2.8	-	-	Dry	<0.5	0.8 M	<0.5	-	-	-	-	<0.5	-	-	-	
4/27/2009 11/4/2009	-	<0.5 <0.5	<0.5 <0.5	4.3 4.6	0.7 <0.5	-	-	-	-	-	<0.5	-	<0.5	-	-	-	<0.5	<0.5 1.3	<0.5	-	4.0 2.2	<0.5 <0.5	1.7 1.6	0.9	-	-	-	-	<0.5 0.7	-	<0.5	<0.5 <0.5	-
4/20/2010	-	<0.5	0.7	3.4	0.6	-	-	-	-	-	-	-	<0.5	-	-	-	-	0.7	-	-	4.8	<0.5	0.9	-	-	-	-	-	<0.5	-	<0.5	<0.5	-
11/11/2010 4/22/2011	-	0.6 <0.5	<0.5 <0.5	4.0 1.8	<0.5 <0.5	-	-	-	-	-	-	-	<0.5 <0.5	-	-	-	<0.5	<0.5 <0.5	<0.5	-	2.8	<0.5 <0.5	1.9 1.5	-	-	-	-	-	<0.5 <0.5	-	<0.5 <0.5	0.6 <0.5	-
11/14/2011	-	0.5	0.8	2.9	0.6	-	-	-	-	-	-	-	<0.5	-		-	<0.5	0.5	<0.5	-	2.9	<0.5	17	-	-	-	-	-	<0.5	-	<0.5	<0.5	-
4/30/2012 11/5/2012	-	<0.5 <0.5	0.6	3.5 3.1	<0.5 0.6	-	-	-	-	-	-	-	<0.5 1.2	-	<0.5	3.7	<0.5	<0.5 0.5	-	-	3.2 1.8	<0.5 <0.5	2.1	-	-	-	-	-	<0.5 0.7	-	<0.5 <0.5	<0.5 0.6	-
5/7/2013	-	-	-	-	-	-	-	-	-	-	-	0.8	0.8	-	<0.5	1.8	-	-	-	-	-	-	-	-	-	-	-	-		-	-		-
12/19/2013 4/15/2014	-	5.8 7.3	1.1 <0.5	2.2	1.6 0.9	-	-	-	-	-	-	0.5 <0.5	2.0 0.9	<0.5	0.6 <0.5	1.4 2.0	0.8 <0.5	0.7	0.7	-	2.0	-	1.8 2.2	-	-	-	-	-		1.3 <0.5	<0.5 0.7	-	-
11/3/2014	-	13	0.5	1.4	-	-	-	-	-	-	-	<0.5	1.3	0.6	<0.5	1.5	<0.5	3.9	<0.5	-	-	-	3.0	-	-	-	-	-	-	<0.5	0.7	-	-
4/6/2015 11/17/2015	-	8.9 3.4	0.5 1.2	3.9 1.4	-	-	-	-	-	-	-	-	1.2	-	<0.5 <0.5	2.6	<0.5 <0.5	1.2 0.5	<0.5 <0.5	-	2.7	-	1.3 1.5	-	-	-	-	-	0.7	<0.5	<0.5 0.5	-	-
4/14/2016	-	<0.5	<0.5	2.3		-	-	-	-	-	-	-	<0.5	-	<0.5	1.8	0.6	0.6	<0.5	-	-	-	0.8	-		-	-	-	-	-	0.5	-	-
11/2/2016 4/24/2017	-	4.2 <0.5	0.6 <0.5	5.1 2.8	-	-	-	-	-	-	-	-	0.9 <0.5	-	<0.5 <0.5	0.9 1.0	<0.5 <0.5	3.1 0.8	<0.5 <0.5	-	-	-	2.4 0.6	-	-	-	-	-	-	-	<0.5 0.6	-	-
11/7/2017		<0.5	<0.5	1.3	-	-	-	1 -	-	-	-	-	0.7	-	<0.5	0.9	<0.5	0.7	<0.5	-	1.3	-	1.3	-	-	-	-	-	1.2	-	<0.5	-	-

Thallium (mg/L)

NH AGQS = 0.002 mg/L WQCTS (Water and Fish Ingestion) = 0.0017 mg/L

							burden ring Wells								rock ing Wells			Groundwater Seep Monitoring Stations					Surface Wate	er		er and Fish Inge	Leachate Monitoring Well
Sampling Date	RFW-1	RFW-2	RFW-3	RFW-4	GZ-1U	GZ-2	GZ-3	GZ-4	GZ-5	GZ-6	GZWP-1	GZ-104	GZ-1L	GZ-2L	GZ-3L	Giancola	SW-P-2 (P-2/1P-2R	GZ-P-5R	SW-P-9 (P-9/1P-9R	SW-1	SW-5	SW-10	SW-11	SW-12	SW-13	Exeter River	MW-6
5/27/1992						-	-						-			Residence	Southern Spring)		Northern Spring)	-							_
11/12/1992	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-			-	-	-	-	-	-	-	-	-
4/6/1993	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
7/1/1993	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-
11/5/1993 4/14/1994		-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
7/15/1994		-	-	-	-	-	-	-	-		-	-	-	-	-	-	<u> </u>	-	-	-	-	-	-	-	-	-	
8/30/1994	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	0.023
9/6/1994	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	0.001
10/11/1994	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	<u> </u>	-	-	-	-	-	-	-	-	-	<0.001
11/18/1994 12/23/1994		-	-	-	-	-		-			-	-	-	-	-	-		-	-	-	-	-	-	+ -	-	-	<0.04
2/2/1995	-	-	-	-	,	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.001
4/12/1995	<0.005	<0.005	<0.005	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.005	-	-	-	-	-	<0.005
7/28/1995 12/8/1995	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.005 0.24
4/26/1996	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	 	-	-	0.06
7/25/1996	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-
11/14/1996	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
4/21/1997 7/22/1997		-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
11/11/1997	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-
4/15/1998	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-
7/6/1998	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	•	-	-	-	-	-	-	-	-	-	-
11/16/1998 4/19/1999		-	-	-		-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
7/27/1999	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-
11/18/1999	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-
5/5/2000	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
7/7/2000 11/16/2000		-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
4/25/2001	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
7/25/2001	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
8/9/2001 11/28/2001	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1/17/2002		-	-	-	-	-	-		-		-	-	-	-	-	-	-	-	-	-			-	-	-	-	-
4/24/2002	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-
11/20/2002	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<u> </u>	-	-	-
4/29/2003 11/17/2003	-	-	-	-		-	-	-	-	•	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
4/28/2004		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-
11/15/2004	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
4/28/2005	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
11/8/2005 4/17/2006	<u> </u>	-	-	-	-	-	-	-	-		-	-	-	-	-	-	<u> </u>	-	-	-	-	-	-	-	-	-	-
11/20/2006		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-
5/2/2007	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-
11/14/2007 4/25/2008	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	<u> </u>	-	-		-	-	-	-	-	-	-
11/18/2008			-	-	-	-	<u> </u>	-			-		-				<u> </u>	<u> </u>		-			-	+ -			-
4/27/2009		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-
11/4/2009		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
4/20/2010 11/11/2010		-	-	-		-	-	-	-	-			-		-		-	-	-	-		-	-		-	-	-
4/22/2011	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
11/14/2011 4/30/2012	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
11/5/2012	-	-	-			-	-	-	-	-	-		-			-	-	-	-	-	-	-	-	-	-	-	-
5/7/2013 12/19/2013	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-
4/15/2014	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	÷	-	-	-	-	-	-	-	-	-	-
11/3/2014 See last page fo			-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-

P-()/OBS\)21000(s)\21270(j\0.40022770_29\)Report\()(037 Armusil Report\()(0508 Road Table 1 /u/s

TABLE 1

HISTORIC WATER QUALITY DATA SUMMARY

Cross Road Landfill - Exeter, New Hampshire NHDES No. 198401081

NOTES:

- 1. Concentrations are in milligrams per liter (mg/L) or micrograms per liter (µg/L) as indicated.
- 2. "-" indicates that measurement were not made/not applicable.
- 3. "<" indicates the parameter was not detected above the detection limit shown.
- 4. **Bold** face print indicates detection.
- 5. "NH AGQS" indicates New Hampshire Ambient Groundwater Quality Standards as defined in the New Hampshire Code of Administrative Rules Env-Or 603.03 revised October 22, 2016.
- 6. Shading indicates that the measured level exceeds its NH AGQS, Secondary Maximum Contaminant Level (SMCL), or Water Quality Criteria for Toxic Substances (WQCTS) as defined by the New Hampshire Code of Administrative Rules Env-Wq 1703.23, adopted November 17, 2016. For groundwater monitoring locations where NH AGQS are not established for the referenced parameter SMCLs are used to shade data. For surface water monitoring locations where WQCTS are not established for the referenced parameter NH AGQS are used to shade data.
- 7. "NE" indicates none established.
- 8. "DA" indicates that the Chain-of-Custody indicates a sample taken and a volatile organic compound (VOC) laboratory report was not available.
- 9. Water quality data were compiled by GZA GeoEnvironmental, Inc. from analytical laboratory reports provided by the Town of Exeter.
- 10. "BDL" indicates target VOCs for the method used were below laboratory detection limits.
- 11. "µS/cm" indicates microseimens per centimeter.
- 12. "M" indicates that the percent recovery for the matrix was outside of the acceptance criteria. Refer to analytical reports for additional information.
- 13. The analytical laboratory reports provided by Resource Environmental Group for groundwater monitoring wells RFW-2, RFW-3 and RFW-4 during November 2006 are mislabeled GZ-2, GZ-3 and GZ-4, respectively.
- 14. The groundwater elevation data provided by Resource Environmental Group for GZ-2U during November 2006 is mislabeled GZ-2M.
- 15. For 11/14/2007 the percent recovery for sample P-9R for chloride was 85.
- 16. Please note that based on review of historic chain-of-custody forms, samples for metals analyses collected from groundwater monitoring wells have been field filtered and represent dissolved metals analyses. Samples collected from surface water location SW-1 have not been field filtered and represent total metals analyses. Samples collected at P-2 (southern spring) and P-9 (northern spring) through 2002 were also not field filtered and represent total metals analyses. Samples collected from the replacement well points (P-2R, P-5R, and P-9R) during 2006 were field filtered. For further information regarding historic sampling procedures, please refer to Section 5.2.4 (Review of Historic Total Metals and Dissolved Metals Analyses) of GZA's May 10, 2002 report.
- 17. Landfill water quality monitoring associated with the samples labeled P-2 and P-9 has been performed by Mr. Tom Walker of REG. Based on conversations with Mr. Walker during a site visit on April 17, 2002, the samples designated P-2 and P-9 on laboratory reports and chain-of-custody forms since November 1996 (the start of routine sampling of P-2 and P-9) were collected from surface water proximate to P-2 and about 300 feet south of P-9 from November 1996 through November 2001. The locations sampled from November 1996 through November 2001 are designated SW-P-2 and SW-P-9 on *Figure 1*. The data from these locations represent total metals analyses of surface water. Replacement groundwater well points designated P-2R and P-9R have been sampled since November 2001.
- 18. Historical VOC concentrations are represented as Total VOCs.

\\GZAMAN1\Jobs\JOBS\21000s\21270\04.0021270.29\Report\2017 Annual Report\Table 1 Notes.doc

TABLE 2 REFERENCE/GROUNDWATER ELEVATION DATA SUMMARY Cross Road Landfill - Exeter, New Hampshire NH DES No. 198401081

Monitoring Location	Ground Surface Elevation	Bedrock Surface Elevation	Depth to Bottom (drilled)	Reference Elevation	Depth-to-Water	Groundwater Surface Elevation	Depth-to-Water	Groundwater Surface Elevation	Depth-to-Water	Groundwater Surface Elevation	Depth-to-Water	Groundwater Surface Elevation	Depth-to-Water	Groundwater Surface Elevation	Depth-to-Water	Groundwater Surface Elevation
			(ft bgs)		04/2	5/01	07/2		07/25/01 08/09/01			11/2	8/01	04/24	1/02	
GZ-1U	97.1	-		99.68	-	-	22.6	77.1	-	-	22.8	76.9	-	-	-	-
GZ-1L	97.1	45.1		99.44	-	-	20.4	79.1	-	-	20.5	78.9	-	-	-	-
GMW-10	114.2	-		-	-	-	Dry	-	-	-	-	-	-	-	-	-
GZ-2U	113.8	-		116.29	-	•	Dry	<116.3	-	-	Dry	<116.3	-	-	-	-
GZ-2L	114.6	81.6		117.12	-	-	33.9	83.3	-	-	34.2	82.9	-	-	-	-
GMW-11	93.8	-		96.32	-	=	Dry	<81.32	-	-	10.9	85.4	-	-	-	-
GZ-3L	94.8	68.8		97.32	-	-	11.5	85.9	-	-	11.8	85.5	-	-	-	-
GZ-4	142.9	<85.9		142.29	-	-	50.1	92.2	-	-	50.3	92.0	-	-	-	-
GZ-5	141.1	<84.1		140.73	-	-	50.8	89.9	-	-	51.1	89.6	-	-	-	-
GZ-6	141.4	<84.4		141.16	-	-	50.0	91.2	-	-	51.2	89.9	-	-	-	-
GZ-101	69.4	-	15	72.11	-	-	-	-	-	-	-	-	-	-	-	-
GZ-102	77.0	-	21.5	80	-	-	-	-	-	-	-	-	-	-	-	-
GZ-103	78.3	-	22	81.39	-	-	-	-	-	-	-	-	-	-	-	-
GZ-104	72.4	-	15.5	75.02	-	-	-	-	-	-	-	-	-	-	-	-
GZ-105	65.4	-	24	67.89	-	-	_	-	-	-	_	-	_	-	_	-
GZ-106	73.5	-	13	76.13	-	-	_	-	-	-	-	-	_	-	-	-
GZ-107	108.7	_	45	103.66	_	-	_	-	_	-	_	-	_	-	_	-
GZ-201	123.3		58	122.85	_	-	_	-	_	-	_	-	_	-	_	-
GZ-202A	121.1		62	123.99	_	-	_	-	_	-	-	-	-	-	_	-
P-1	64.5	_		67.17	_	_	_	_	_	-	_	_	_	_	_	-
P-2 / P-2R	68.3	-		69.18	-	-	-	-	-	-	0.7	68.5	-	-	_	-
P-3	67.9	-		68.41	-	_	-	-	_	-	2.0	66.4	-	-	_	_
P-4	70.5	-		71.15	-	-	-	-	_	-	2.0	69.2	-	-	_	-
GW-P-5R/P-5	82.3	-		84.52	-	-	_	-	_	-	-	-	_	-	_	-
P-6	74.8	-		76.01	-	-	_	-	_	_	3.2	72.8	_	-	_	
P-7	-	-		84.52		-	_	-	_	-		72.8	_	-		-
P-8	69.7			70.25				-	-	-	2.5	67.8	_	-	-	
		-			-	-	-		-							-
P-9 / P-9R	68 85.6	24.6		68.35	2 22	- 04 00	-	-	4.05	- 02.16	-	02.0	- 7.5	90.6	7.0	90.2
RFW-1		34.6	+	88.11	3.23	84.88	-	-	4.95	83.16	5.3	82.8	7.5	80.6	7.9	80.2
RFW-2	118	-		119.72	41.34	78.38	-	-	43.02	76.7	-	- 70.2	44.9	74.8	45.2	74.5
RFW-3	140.6	-		143.48	72.95	70.53	-	-	72.89	70.59	73.2	70.3	74.9	68.6	75.6	67.9
RFW-4	116.9	46.9		118.71	45	73.71	-	-	45.75	72.96	46.0	72.8	47.5	71.3	47.9	70.8
WS-1	102	-		102.26	-	-	-	-	-	-	12.2	90.0	-	-	-	-
WS-2	93	-		93.57	-	-	-	-	-	-	4.3	89.3	-	-	-	-
SW-17/Seep		-		61.65	-	-	-	-	-	-	-	-	-	-	-	-
SW-14	-	-		40.47	-	-	-	-	-	-	-	-	-	-	-	-
Bridge		-		60.55	-	-	-	-	-	-	-	-	-	-	-	-

TABLE 2 REFERENCE/GROUNDWATER ELEVATION DATA SUMMARY Cross Road Landfill - Exeter, New Hampshire NH DES No. 198401081

Monitoring Location	Ground Surface Elevation	Bedrock Surface Elevation	Depth to Bottom (drilled)	Reference Elevation	Depth-to-Water	Groundwater Surface Elevation										
			(ft bgs)		11/2	0/02	04/29/03		i			11/17/03		8/04	11/15/04	
GZ-1U	97.1	-		99.68	-	-	23.5	76.2	23.2	76.5	23.5	76.2	22.6	77.1	22.3	77.4
GZ-1L	97.1	45.1		99.44	-	-	23.2	76.3	20.8	78.6	21.1	78.3	23.2	76.3	20.9	78.6
GMW-10	114.2	-		-	-	-	-	-	-	-	-	-	-	-	-	-
GZ-2U	113.8	-		116.29	-	-	dry	<116.3	dry	<116.3	dry	<116.3	-	-	-	-
GZ-2L	114.6	81.6		117.12	-	-	33.6	83.5	33.7	83.4	36.6	80.5	32.8	84.3	34.7	82.4
GMW-11	93.8	-		96.32	-	-	-	-	-	-	-	-	-	-	-	-
GZ-3L	94.8	68.8		97.32	-	-	13.9	83.4	12.2	85.2	13.0	84.4	10.8	86.5	12.4	84.9
GZ-4	142.9	<85.9		142.29	-	-	-	-	-	-	-	-	-	-	-	-
GZ-5	141.1	<84.1		140.73	-	-	-	-	-	-	-	-	-	-	-	-
GZ-6	141.4	<84.4		141.16	-	-	-	-	-	-	-	-	-	-	-	-
GZ-101	69.4	_	15	72.11	-	-	-	-	-	-	-	-	-	-	-	-
GZ-102	77.0	-	21.5	80	-	-	-	-	-	-	-	-	-	-	-	-
GZ-103	78.3	-	22	81.39	-	-	-	1	-	-	-	-	-	-	-	-
GZ-104	72.4	-	15.5	75.02	-	-	-	-	-	-	-	-	-	-	-	-
GZ-105	65.4	-	24	67.89	-	-	-	-	-	-	-	-	-	-	-	-
GZ-106	73.5	-	13	76.13	-	-	-	-	-	-	-	-	-	-	-	-
GZ-107	108.7	-	45	103.66	-	-	-	-	-	-	-	-	-	-	-	-
GZ-201	123.3		58	122.85	-	-	-	-	-	-	-	-	-	-	-	-
GZ-202A	121.1		62	123.99	-	-	-	-	-	-	-	-	-	-	-	-
P-1	64.5	-		67.17	-	-	-	-	-	-	-	-	-	-	-	-
P-2 / P-2R	68.3	-		69.18	-	-	3.2	68.3	-	-	3.7	68.3	3.6	65.6	3.6	65.6
P-3	67.9	-		68.41	-	-	-	-	-	-	-	-	-	-	-	-
P-4	70.5	-		71.15	-	-	-	-	1.8	69.4	-	-	-	-	-	-
GW-P-5R/P-5	82.3	-		84.52	-	-	-	-	2.0	72.8	-	-	7.8	76.7	7.6	76.9
P-6	74.8	-		76.01	-	-	-	-	-	-	-	-	-	-	-	-
P-7	-	-		84.52	-	-	-	-	-	-	-	-	-	-	-	-
P-8	69.7	-		70.25	-	-	-	-	-	-	-	-	-	-	-	-
P-9 / P-9R	68	-		68.35	-	-	2.7	68.0	-	-	3.2	68.0	3.0	65.4	3.0	65.3
RFW-1	85.6	34.6		88.11	8.0	80.2	5.7	82.4	5.8	82.3	destroyed	-	-	-	-	-
RFW-2	118	-		119.72	45.7	74.0	43.5	76.2	43.6	76.1	43.8	75.9	42.3	77.4	43.5	76.2
RFW-3	140.6	-		143.48	76.2	67.3	74.3	69.2	-	-	74.6	68.9	73.6	69.9	73.9	69.6
RFW-4	116.9	46.9		118.71	48.5	70.3	46.4	72.3	-	-	47.0	71.8	45.8	73.0	46.5	72.2
WS-1	102	-		102.26	-	-	-	-	12.4	89.8	-	-	-	-	-	-
WS-2	93	-		93.57	-	-	-	-	destroyed	-	-	-	-	-	-	-
SW-17/Seep		-		61.65	-	-	-	-	-	-	-	-	-	-	-	-
SW-14	-	-		40.47	-	-	-	-	-	-	-	-	-	-	-	-
Bridge		_		60.55	_	-	-	-	_	_	_	-	_	-	_	-

TABLE 2 REFERENCE/GROUNDWATER ELEVATION DATA SUMMARY

Cross Road Landfill - Exeter, New Hampshire
NH DES No. 198401081

Monitoring Location	Ground Surface Elevation	Bedrock Surface Elevation	Depth to Bottom (drilled)	Reference Elevation	Depth-to-Water	Groundwater Surface Elevation	Depth-to-Water	Groundwater Surface Elevation	Depth-to-Water	Groundwater Surface Elevation	Depth-to-Water	Groundwater Surface Elevation	Depth-to-Water	Groundwater Surface Elevation	Depth-to-Water	Groundwater Surface Elevation
		(ft bgs) 04/28/05			11/0		04/17/06 11/20/				i e	5/20/07		2/07		
GZ-1U	97.1	-		99.68	21.3	78.4	21.9	77.8	21.4	78.3	19.9	79.8	19.7	80.0	22.7	77.0
GZ-1L	97.1	45.1		99.44	18.5	81.0	18.0	81.4	18.6	80.9	16.8	82.6	16.4	83.0	27.0	72.5
GMW-10	114.2	-		-	-	-	-	-	-	-	-	-	-	-	-	-
GZ-2U	113.8	-		116.29	-	-	-	-	30.9	85.4	28.6	87.7	28.1	88.2	-	-
GZ-2L	114.6	81.6		117.12	32.0	85.1	31.7	85.4	32.5	84.7	31.5	85.6	30.7	86.5	35.2	81.9
GMW-11	93.8	-		96.32	-	1	-	-	-	-	-	-	-	-	-	-
GZ-3L	94.8	68.8		97.32	8.8	88.5	8.7	88.6	9.2	88.1	7.5	89.9	7.3	90.1	12.1	85.2
GZ-4	142.9	<85.9		142.29	-	-	-	-	-	-	-	-	-	-	-	-
GZ-5	141.1	<84.1		140.73	-	-	-	-	-	-	-	-	-	-	-	-
GZ-6	141.4	<84.4		141.16	-	-	-	-	-	-	-	-	-	-	-	-
GZ-101	69.4	-	15	72.11	-	-	-	-	-	-	-	-	-	-	11.0	61.1
GZ-102	77.0	-	21.5	80	-	-	-	-	-	-	-	-	-	-	16.5	63.5
GZ-103	78.3	-	22	81.39	-	-	-	-	-	-	-	-	-	-	17.8	63.6
GZ-104	72.4	-	15.5	75.02	-	-	-	-	-	-	-	-	-	-	12.7	62.3
GZ-105	65.4	-	24	67.89	-	-	-	-	-	-	-	-	-	-	11.1	56.8
GZ-106	73.5	-	13	76.13	-	-	-	-	-	-	-	-	-	-	12.3	63.9
GZ-107	108.7	-	45	103.66	-	-	-	-	-	-	-	-	-	-	37.1	66.6
GZ-201	123.3		58	122.85	-	-	-	-	-	-	-	-	-	-	-	-
GZ-202A	121.1		62	123.99	-	-	-	-	-	-	-	-	-	-	-	-
P-1	64.5	-		67.17	-	-	-	-	-	-	-	-	-	-	-	-
P-2 / P-2R	68.3	-		69.18	3.4	65.8	3.6	65.6	3.8	65.4	3.5	65.7	3.6	65.5	4.0	65.2
P-3	67.9	-		68.41	-	-	-	-	-	-	-	-	-	-	-	-
P-4	70.5	-		71.15	-	-	-	-	-	-	-	-	-	-	-	-
GW-P-5R/P-5	82.3	-		84.52	6.7	77.8	5.1	79.4	7.1	77.5	5.3	79.2	5.4	79.2	9.3	75.2
P-6	74.8	-		76.01	-	-	-	-	-	-	-	-	-	-	-	-
P-7	-	-	1	84.52	-	-	-	-	-	-	-	-	-	-	-	-
P-8	69.7	-		70.25	-	-	-	-	-	-	-	-	-	-	-	-
P-9 / P-9R	68	-		68.35	2.9	65.4	3.2	65.2	3.0	65.3	3.3	65.1	3.3	65.1	3.4	64.9
RFW-1	85.6	34.6	1	88.11	-	-	-	-	-	-	-	-	-	-	-	-
RFW-2	118	-	1	119.72	41.2	78.5	40.2	79.5	41.5	78.2	39.3	80.4	39.4	80.3	43.3	76.4
RFW-3	140.6	-	1	143.48	72.0	71.5	72.0	71.5	71.6	71.9	70.8	72.7	70.5	73.0	73.9	69.6
RFW-4	116.9	46.9		118.71	44.5	74.2	44.5	74.2	44.7	74.0	43.9	74.9	43.4	75.3	46.8	71.9
WS-1	102	-	1	102.26	-	-	-	-	-	-	-	-	-	-	-	-
WS-2	93	-		93.57	-	-	-	-	-	-	-	-	-	-	-	-
SW-17/Seep	-	-	+	61.65	-	-	-	-	-	-	_	_	-	-	3.8	57.9
SW-14	-	-	+	40.47	-	-	-	-	-	-	_	_	-	-	2.9	37.6
Bridge		-		60.55	-	-	-	-	-	-	-	-	-	-	13.14	47.4

TABLE 2 REFERENCE/GROUNDWATER ELEVATION DATA SUMMARY

Cross Road Landfill - Exeter, New Hampshire
NH DES No. 198401081

Monitoring Location	Ground Surface Elevation	Bedrock Surface Elevation	Depth to Bottom (drilled)	Reference Elevation	Depth-to-Water	Groundwater Surface Elevation										
			(ft bgs)	04/25/08			11/1		04/27/09		11/04/09		04/20/10		11/11/10	
GZ-1U	97.1	-		99.68	21.2	78.5	21.9	77.8	20.80	78.9	22.15	77.5	17.42	82.3	22.18	77.5
GZ-1L	97.1	45.1		99.44	-	-	19.3	80.2	-	-	19.55	79.9	-	-	19.78	79.7
GMW-10	114.2	-		-	-	-	-	-	-	-	-	-	-	-	-	-
GZ-2U	113.8	-		116.29	-	-	-	-	-	-	-	-	-	-	-	-
GZ-2L	114.6	81.6		117.12	32.2	84.9	33.2	83.9	31.76	85.4	33.68	83.4	29.2	87.9	34.31	82.8
GMW-11	93.8	-		96.32	-	-	-	-	-	-	-	-	-	-	-	-
GZ-3L	94.8	68.8		97.32	-	-	-	-	-	-	10.71	86.6	-	-	11.2	86.1
GZ-4	142.9	<85.9		142.29	-	-	-	-	-	-	-	-	-	-	-	-
GZ-5	141.1	<84.1		140.73	-	-	-	-	-	-	-	-	-	-	-	-
GZ-6	141.4	<84.4		141.16	-	-	-	-	-	-	-	-	-	-	-	-
GZ-101	69.4	-	15	72.11	-	-	-	-	-	-	-	-	-	-	-	-
GZ-102	77.0	-	21.5	80	-	-	-	-	-	-	-	-	-	-	-	-
GZ-103	78.3	-	22	81.39	-	-	-	-	-	-	-	-	-	-	-	-
GZ-104	72.4	-	15.5	75.02	-	-	12.3	62.7	-	-	12.40	62.6	8.94	66.1	12.40	62.6
GZ-105	65.4	-	24	67.89	-	-	-	-	-	-	-	-	-	-	-	-
GZ-106	73.5	-	13	76.13	-	-	-	-	-	-	-	-	_	-	-	-
GZ-107	108.7	-	45	103.66	-	-	-	-	-	-	-	-	_	-	-	-
GZ-201	123.3		58	122.85	-	-	-	_	-	-	-	-	-	-	_	-
GZ-202A	121.1		62	123.99	-	-	-	-	-	-	-	-	_	-	_	-
P-1	64.5	_		67.17	-	-	-	-	-	-	_	-	_	-	_	_
P-2 / P-2R	68.3	-		69.18	3.5	65.6	3.5	65.7	3.51	65.7	3.46	65.7	3.61	65.6	3.41	65.8
P-3	67.9	-		68.41	-	-	_	-	-	-	-	-	-	-	-	-
P-4	70.5	_		71.15	_	-	-	-	-	-	-	_	_	-	_	_
GW-P-5R/P-5	82.3	_		84.52	7.0	77.5	7.7	76.9	6.47	78.1	7.93	76.6	4.08	80.4	8.22	76.3
P-6	74.8	_	+	76.01	-	-	-	-	-	-	7.55	-	-	-	-	-
P-7	74.0	-	+	84.52	_	-	_	_	-	-	_	_	_		<u> </u>	_
P-8	69.7	-		70.25	_	-	-	-	-	-	-	-	-	-	<u> </u>	-
P-9 / P-9R	68	_		68.35	2.8	65.6	2.9	65.5	2.90	65.5	2.81	65.5	2.76	65.6	2.86	65.5
RFW-1	85.6	34.6		88.11	-	-	2.9	-	2.90	-	2.01	-	2.76	-	2.00	-
															42.27	
RFW-2	118	-	+	119.72	41.4	78.3	41.9	77.8	40.67	79.1	42.16	77.6	37.81	81.9	42.37	77.4
RFW-3	140.6	-	+ +	143.48	71.8	71.7	71.7	71.8	71.87	71.6	72.75	70.7	71.68	71.8	73.66	69.8
RFW-4	116.9	46.9	1	118.71	44.5	74.2	45.4	73.3	44.19	74.5	45.68	73.0	42.04	76.7	45.74	73.0
WS-1	102	-		102.26	-	-	-	-	-	-	-	-	-	-	-	-
WS-2	93	-		93.57	-	-	-	-	-	-	-	-	-	-	-	-
SW-17/Seep		-	1	61.65	-	-	-	-	-	-	-	-	-	-	-	-
SW-14	-	-		40.47	-	-	-	-	-	-	-	-	-	-	-	-
Bridge		-		60.55	-	-	-	-	-	-	-	-	-	-	-	-

TABLE 2 REFERENCE/GROUNDWATER ELEVATION DATA SUMMARY

Cross Road Landfill - Exeter, New Hampshire
NH DES No. 198401081

Monitoring Location	Ground Surface Elevation	Bedrock Surface Elevation	Depth to Bottom (drilled)	Reference Elevation	Depth-to-Water	Groundwater Surface Elevation												
			(ft bgs)		04/2		11/1		04/3	l	11/0		05/0	7/13	1	9/2013	11/0	3/14
GZ-1U	97.1	-		99.68	21.97	77.7	22.17	77.5	22.87	76.8	24.20	75.5	-	-	24.66	75.0	-	-
GZ-1L	97.1	45.1		99.44	-	-	19.63	79.8	-	-	26.40	73.0	-	-	22.44	77.0	22.63	76.8
GMW-10	114.2	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
GZ-2U	113.8	=		116.29	-	-	-	-	-	-	-	-	-	-	-	-	-	=
GZ-2L	114.6	81.6		117.12	32.54	84.6	33.40	83.7	33.92	83.2	36.85	80.3	-	-	37.32	79.8	35.78	81.3
GMW-11	93.8	-		96.32	-	-	-	-	-	-	-	-	-	-	-	-	-	-
GZ-3L	94.8	68.8		97.32	-	-	10.72	86.6	-	-	13.96	83.4	-	-	14.74	82.6	15.87	81.5
GZ-4	142.9	<85.9		142.29	-	-	-	-	-	-	-	-	-	-	-	-	-	-
GZ-5	141.1	<84.1		140.73	-	-	-	-	-	-	-	-	-	-	-	-	-	-
GZ-6	141.4	<84.4		141.16	-	-	-	-	-	-	-	-	-	-	-	-	-	-
GZ-101	69.4	-	15	72.11	-	-	-	-	-	-	-	-	11.50	60.6	-	-	-	-
GZ-102	77.0	-	21.5	80	-	-	-	-	-	-	-	-	17.05	63.0	17.85	62.2	18.18	61.8
GZ-103	78.3	-	22	81.39	-	-	-	-	-	-	-	-	18.20	63.2	-	-	-	-
GZ-104	72.4	_	15.5	75.02	8.94	66.1	12.72	62.3	12.44	62.6	13.77	61.3	13.50	61.5	13.87	61.2	14.22	60.8
GZ-105	65.4	_	24	67.89	_	-	_	-	-	-	_	_	11.48	56.4	_	-	_	-
GZ-106	73.5	_	13	76.13	_	-	_	-	_	_	-	-	14.15	62.0	_	_	13.53	62.6
GZ-107		_	45	103.66	_	-	_	-	_	_	_	_	38.21	65.5	_	_	-	-
GZ-201	108.7		58	122.85	_		_	-	_	-	51.68	71.2	51.12	71.7	51.94	70.9	52.23	70.6
GZ-202A	123.3		62	123.99	_	_	_	-	_	_	52.48	71.5	51.58	72.4	52.38	71.6	52.76	71.2
P-1	121.1 64.5	-	02	67.17	_		_	_		-	-	-	-	-	-	71.0	-	-
P-2 / P-2R	68.3	_		69.18	3.55	65.6	3.48	65.7	3.50	65.7	3.47	65.7	_	-	3.55	65.6	_	-
P-3	67.9	-		68.41	-	-	-	-	-	-	-	-	-	-	-	-	-	-
P-4	70.5	-		71.15	7.46	-	7.00	- 76.6	- 0.50	75.0	-	- 745	-	-	-	-	-	-
GW-P-5R/P-5	82.3	-		84.52	7.46	77.1	7.96	76.6	8.68	75.8	9.98	74.5	-	-	-	-	-	-
P-6	74.8	-		76.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-
P-7	-	-		84.52	-	-	-	-	-	-	-	-	-	-	-	-	-	-
P-8	69.7	-		70.25	-	-	-	-	-	-	-	-	-	-	-	-	-	-
P-9 / P-9R	68	-		68.35	2.77	65.6	2.74	65.6	2.78	65.6	2.92	65.4	-	-	2.8	65.6	3.26	65.1
RFW-1	85.6	34.6		88.11	-	-	-	-	-	-	-	-	-	-	-	-	-	-
RFW-2	118	-		119.72	41.82	77.9	42.06	77.7	43.10	76.6	44.48	75.2	-	-	45.11	74.6	44.27	75.5
RFW-3	140.6	-		143.48	73.09	70.4	73.97	69.5	73.31	70.2	74.9	68.6	-	-	75.90	67.6	75.48	68.0
RFW-4	116.9	46.9		118.71	45.35	73.4	45.68	73.0	46.03	72.7	47.4	71.3	-	-	47.71	71.0	47.84	70.9
WS-1	102	-		102.26	-	-	-	-	-	-	-	-	-	-	-	-	-	-
WS-2	93	-		93.57	-	-	-	1	-	-	-	-	-	-	-	-	-	1
SW-17/Seep		-		61.65	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SW-14	-	-		40.47	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Bridge		-		60.55	-	-	-	-	-	-	-	-	-	-	-	-	-	-

TABLE 2 REFERENCE/GROUNDWATER ELEVATION DATA SUMMARY Cross Road Landfill - Exeter, New Hampshire NH DES No. 198401081

Monitoring Location	Ground Surface Elevation	Bedrock Surface Elevation	Depth to Bottom (drilled)	Reference Elevation	Depth-to-Water	Groundwater Surface Elevation								
			(ft bgs)		11/1	7/15 04/14		4/16	11/02/16		04/2	4/17	11/0	7/17
GZ-1U	97.1	-		99.68	-	-	-	-	-	-	-	-	-	-
GZ-1L	97.1	45.1		99.44	22.90	76.5	21.94	77.5	23.52	75.9	22.95	76.5	21.39	78.1
GMW-10	114.2	-		-	-	-	-	-	-	-	-	-	-	-
GZ-2U	113.8	-		116.29	-	1	-	-	-	-	-	-	-	-
GZ-2L	114.6	81.6		117.12	38.07	79.1	35.28	81.8	38.72	78.4	34.28	82.8	36.17	81.0
GMW-11	93.8	-		96.32	-	-	-	-	-	-	dry	-	dry	-
GZ-3L	94.8	68.8		97.32	15.25	82.1	13.68	83.6	15.79	81.5	11.63	85.7	12.94	84.4
GZ-4	142.9	<85.9		142.29	-	-	-	-	-	-	-	-	-	-
GZ-5	141.1	<84.1		140.73	-	-	-	-	-	-	-	-	-	-
GZ-6	141.4	<84.4		141.16	-	-	-	-	-	-	-	-	-	-
GZ-101	69.4	-	15	72.11	-	-	-	-	-	-	-	-	-	-
GZ-102	77.0	=	21.5	80	18.18	61.8	-	-	-	-	-	-	-	-
GZ-103	78.3	=	22	81.39	-	-	-	-	-	-	-	-	-	-
GZ-104	72.4	=	15.5	75.02	14.32	60.7	13.62	61.4	14.60	60.4	13.3	61.7	13.53	61.5
GZ-105	65.4	-	24	67.89	-	-	-	-	-	-	-	-	-	-
GZ-106	73.5	-	13	76.13	13.53	62.6	-	-	-	-	-	-	-	-
GZ-107	108.7	-	45	103.66	-	-	-	-	-	-	-	-	-	-
GZ-201	123.3		58	122.85	52.45	70.4	51.95	70.9	53.15	69.7	51.37	71.5	51.27	71.6
GZ-202A	121.1		62	123.99	52.95	71.0	52.40	71.6	53.58	70.4	51.83	72.2	51.69	72.3
P-1	64.5	-		67.17	-	-	-	-	-	-	-	-	-	-
P-2 / P-2R	68.3	-		69.18	3.7	65.5	-	-	-	-	-	-	3.04	66.1
P-3	67.9	-		68.41	-	-	-	-	-	-	-	-	-	-
P-4	70.5	-		71.15	-	-	-	-	-	-	-	-	-	-
GW-P-5R/P-5	82.3	-		84.52	-	-	-	-	-	-	-	-	-	-
P-6	74.8	-		76.01	-	-	-	-	-	-	-	-	-	-
P-7	-	-		84.52	-	-	-	-	-	-	-	-	-	-
P-8	69.7	=		70.25	-	-	-	-	-	-	-	-	-	-
P-9 / P-9R	68	-		68.35	3.05	65.3	2.73	65.6	3.19	65.2	2.8	65.6	2.54	65.8
RFW-1	85.6	34.6		88.11	-	-	-	-	-	-	-	-	-	-
RFW-2	118	-		119.72	44.27	75.5	44.35	75.4	45.83	73.9	42.9	76.8	43.82	75.9
RFW-3	140.6	-		143.48	75.66	67.8	74.93	68.6	76.32	67.2	74.5	69.0	74.43	69.1
RFW-4	116.9	46.9		118.71	48.08	70.6	47.26	71.5	48.55	70.2	46.39	72.3	38.98	79.7
WS-1	102	-		102.26	-	-	-	-	-	-	-	-	-	-
WS-2	93	-		93.57	-	-	-	-	-	-	-	-	-	-
SW-17/Seep		-		61.65	-	-	-	-	-	-	-	-	-	-
SW-14	-	-		40.47	-	-	-	-	-	-	-	-	-	-
Bridge		-		60.55	-	-	_	-	-	-	-	-	-	-

TABLE 2

REFERENCE/GROUNDWATER ELEVATION DATA SUMMARY

Cross Road Landfill - Exeter, New Hampshire NH DES No. 198401081

NOTES:

- 1. Groundwater elevation data were collected by GZA GeoEnvironmental, Inc. (GZA) on 7/23/01 and 8/9/01, and provided by the Town of Exeter for 4/25/01, 7/25/01, and 11/28/01 through the present.
- 2. Reference elevation is the top of PVC riser or top of well point casing.
- 3. Elevations are reported in feet above the National Geodetic Vertical Datum.
- 4. Reference elevations for wells RFW-1 through RFW-4 and piezometers P-1 through P-9 are based on Table 2 (Water Level Measurements, Exeter Landfill, Exeter, New Hampshire) of Weston's report dated June 1990.
- 5. Reference elevations for wells GZ-1U through GZ-3L, GZ-101 through GZ-107, and GZ-201 through GZ-202A were established by GZA using optical survey techniques and referenced to a benchmark established by TF Moran approximately 75 feet south of well GZ-2L (GZ-1U through GZ-3L) and top of PVC of selected wells (each of the other monitoring wells referenced in this note).
- 6. Reference elevations for former water supply wells WS-1 and WS-2 were established by GZA on using optical survey techniques and referenced to the top of PVC (reference elevation) for monitoring well RFW-1 [88.11 feet] as indicated on Table 2 (Water Level Measurements, Exeter Landfill, Exeter, New Hampshire) of Weston's report dated June 1990.
- 7. Wells GMW-10 and GMW-11 were installed for use as Landfill gas monitoring wells. Groundwater was encountered in GMW-11 during the August 9, 2001 monitoring round.
- 8. "-" indicates water level measurements were not performed at the location and date specified, or no data/not encountered.
- 9. Bedrock surface elevations are based on depth to bedrock encountered while drilling borings and as shown on boring logs RFW-1, RFW-2, RFW-3, and RFW-4 in Weston's 1990 report.
- 10. P-5 was replaced with GZ-P-5R during April 2004.

Figures

Plots

PLOT 1A SUMMARY OF CONCENTRATION DATA

Groundwater Sampling Locations

PLOT 1B SUMMARY OF CONCENTRATION DATA

Groundwater Sampling Locations

PLOT 1C SUMMARY OF CONCENTRATION DATA

Groundwater Sampling Locations

PLOT 1D SUMMARY OF CONCENTRATION DATA

Groundwater Sampling Locations

PLOT 2A SUMMARY OF CONCENTRATION DATA

Groundwater Sampling Locations

PLOT 2B SUMMARY OF CONCENTRATION DATA

Groundwater Sampling Locations

PLOT 2C SUMMARY OF CONCENTRATION DATA Groundwater Sampling Locations

PLOT 2D SUMMARY OF CONCENTRATION DATA

Groundwater Sampling Locations

PLOT 3A SUMMARY OF CONCENTRATION DATA

Groundwater Sampling Locations

PLOT 3B SUMMARY OF CONCENTRATION DATA

Groundwater Sampling Locations

PLOT 3C SUMMARY OF CONCENTRATION DATA

Groundwater Sampling Locations

PLOT 3D SUMMARY OF CONCENTRATION DATA

Groundwater Sampling Locations

PLOT 4A SUMMARY OF CONCENTRATION DATA

Groundwater Sampling LocationsCross Road Landfill - Exeter, New Hampshire

PLOT 4B SUMMARY OF CONCENTRATION DATA

Groundwater Sampling Locations

Cross Road Landfill - Exeter, New Hampshire

PLOT 4C SUMMARY OF CONCENTRATION DATA

Groundwater Sampling Locations

Cross Road Landfill - Exeter, New Hampshire

PLOT 4D SUMMARY OF CONCENTRATION DATA

Groundwater Sampling Locations

Cross Road Landfill - Exeter, New Hampshire

PLOT 5A SUMMARY OF CONCENTRATION DATA

Groundwater Sampling Locations

PLOT 5B SUMMARY OF CONCENTRATION DATA

Groundwater Sampling Locations

PLOT 5C SUMMARY OF CONCENTRATION DATA

Groundwater Sampling Locations

PLOT 5D SUMMARY OF CONCENTRATION DATA

Groundwater Sampling Locations

November 2017 Analytical Laboratory Data

November 10, 2017

Ms. Jennifer Mates, P.E. Town of Exeter DPW 13 Newfields Road Exeter, NH 03833

Subject: November 2017 Semi Annual Groundwater Monitoring

Cross Road Landfill – Exeter, NH NHDES GWP-1984010812-E-004 CEC Project Number 150-583

Dear Ms. Mates.

The following is a summary of field sampling procedures and chain of custody documents for the above referenced groundwater monitoring project that occurred November 7, 2017.

Civil & Environmental Consultants, Inc. (CEC) was contracted to collect samples from 12 groundwater monitoring wells and piezometers identified as RFW-2, RFW-3. RFW-4, GMW-11, GZ-1L, GZ-2L, GZ-3L, GZ-104, GZ-201, GZ-202A, P-2R, P-9R, and two surface water points identified as SW-13 and SW-17.

Following the well purge, water levels were allowed to return to 95% of their original static level prior to sample collection for field analysis and off-site chemistry. The samples for off-site analysis were collected into bottles (pre-preserved if required) provided by the contract laboratory, Eastern Analytical Inc. (EAI) of Concord, NH, logged on to the chain of custody and placed on ice for delivery.

The dedicated waterra tubing and foot-valves in all monitoring wells was in good condition after a site survey that took place when we arrived onsite. All monitoring points were sampled with the exception of GMW-11, which was dry. All wells were capped and those that had locks were secured prior to leaving the site.

Ms. Jennifer Mates, P.E. Semi-Annual Ground Water Monitoring – November 2017 CEC Project 150-583 Page 2 November 2017

FIELD ANALYSIS

An Oakton Multi-parameter Tester 35 was calibrated and functioning properly during all field chemistry analysis. There were no onsite conditions (weather, construction, etc.) that would have an adverse impact on the sample data quality or integrity.

Almost all of the wells sampled showed slightly higher pH levels, as well as higher specific conductance compared to historical data from the last few sampling events. As a quality control measure multiple wells were analyzed with another Oakton Multi-parameter Tester 35, which was also calibrated in the morning on November 7, 2017 to ensure the measurements being recorded were accurate. There was no pH excursion at monitoring GZ-2L that was experienced during the April 2017 monitoring round.

Groundwater samples noted as 'dissolved metals' were field filtered using a 0.45 micron filter apparatus prior to preservation.

You will receive the analytical data directly from EAI within 10 - 14 business days.

The next required round of permit monitoring will take place in April 2018.

Thank you for your continued utilization of our field sampling services. Please do not hesitate to contact me with any questions or comments regarding the work performed.

Sincerely,

CIVIL & ENVIRONMENTAL CONSULTANTS, INC.

Brandon R. Patrick

Assistant Project Manager

Thomas E. Walker

Senior Project Manager

Attachments:

November 2017 Field Summary Table

Eastern Analytical Chain of Custody Documents

cc: Dawna Tousignant – GZA GeoEnvironmental

Ms. Jennifer Mates, P.E. Semi-Annual Ground Water Monitoring – November 2017 CEC Project 150-583 Page 3 November 2017

Project Location: Exeter, NH – Cross Road Landfill Field Personnel: Brandon Patrick & Andrew Tarani

Date: November 7, 2017

Weather: Partly Cloudy, 36-45°F

Well ID	Depth To Water	Depth To Bottom	Purge Volume	pН	Conductivity	Temperature
	ft	ft	gal	s.u.	μs	• <i>C</i>
RFW-2	43.82	71.91	14	6.78	288	10.9
RFW-3	74.43	98.61	12	6.45	632	12.4
RFW-4	38.98	69.03	15	7.48	828	11.7
GMW-11	DRY	11.16	DRY			
GZ-1L	21.39	77.49	27.5 TD	8.22	617	11.3
GZ-2L	36.17	56.59	10 TD	7.44	1058	9.9
GZ-3L	12.94	39.40	12.5	7.29	236	10.4
GZ-104	13.53	16.78	2	7.34	600	11.9
GZ-201	51.27	57.63	3.5	6.88	929	13.0
GZ-202A	51.69	66.52	7.5	7.18	535	14.2
P-2R	3.04	8.12	2.5	7.36	369	10.1
P-9R	2.54	7.62	2.5	7.38	636	11.5
SW-13	N/A	N/A	N/A	7.38	374	10.0
SW-17	N/A	N/A	N/A	7.46	494	11.3

NOTES:

- **TD** = Well purged until dry
- GMW-11 could not be sampled due to low yield / well dryness.
- Dissolved metals samples were field filtered using 0.45 micron filter prior to preservation with HNO₃.
- Samples were stored and transported on ice after collection
- Field measurements for static elevation taken using a Solinst Tape, readings for pH, Specific Conductivity and Temperature taken using an Oakton Multi-parameter Tester 35.

CHAIN-OF-CUSTODY RECORD

175643

EXENH

	Date/Time Composites need start				
Sample IDs	and stop dates/times	Matrix	Parameters and Sample Notes		# of containers
RFW-2	11/7/17	aqueous Grab or Comp	AqTot/Cl/NO3/TKN/VNH8260CFullList/V8260SIM14DIC AqDis/ICPMets.As.Fe.Mn.Ba.Cd.Cr.Pb.Se.Ag.Hg	XANE	7
Sampler confirm	1450 ns ID and parameters	are accurate	Circle preservative/s:(HCb (HNO) H,SO) NaOH MEOH N	a.S.O. ICF	Dissolved Sample Field Filtered 🔀
	IS ID and parameters	l			
RFW-3	11/7/17	aqueous Grab or Comp	AqTot/CI/NO3/TKN/VNH8260CFullList/V8260SIM14DIC AqDis/ICPMets.As.Fe.Mn.Ba.Cd.Cr.Pb.Se.Ag.Hg	AANE	7
Sampler confirm	5 <i>U</i> ns iD and parameter	 s are accurate	Circle preservative/s: (HC) (HN) (H ₂ SO) NaOH MEOH N	a,S ₂ O ₃ ICE	Dissolved Sample Field Filtered
RFW-4	11/7/17	agueous	AqTot/CI/NO3/TKN/VNH8260CFullList/V8260SIM14DIC		7
	1430	Grab or Comp	AqDis/ICPMets.As.Fe.Mn.Ba.Cd.Cr.Pb.Se.Ag.Hg		
Sampler confirm	l ' ' ns ID and parameter	l s are accurate	Circle preservative/s: (HCL) (HDQ) (H2SQ) NaOH MEOH N	a ₂ S ₂ O ₃ ICE	Dissolved Sample Field Filtered
GZ-1L	11/1/17	aqueous	AqTot/CI/NO3/TKN/ICPMets.As.Fe.Mn.Ba.Cd.Cr.Pb.Se	Ag.Hg/VNH8260CFullList/V8260S	SIM14DIOXANE 7
	1620	Grap or Comp			
Sampler confirm	า ns ID and parameter	s are accurate	Circle preservative/s HCV (HNO ₃ (H ₂ SO ₄ NaOH MEOH N	a ₂ S ₂ O ₃ ICE	Dissolved Sample Field Filtered
Please en	nsure this auto CO	C is accurate,	adheres to permit or sampling requirements for	this sampling event, and mo	dify as necessary.
EAI Project ID 31			Results Needed by: Preferred date	ReportingOptions	
Project Name Cro	ss Road Landfill No	ov 2017	Notes:	□нс [□ NO FAX PO# 4335-309
•					Partial FAX Quote#: 1013778
State NH Client (Pro Mgr) Je	nnifer Mates		Attn sampler: Auto chain of custody provided for your convenience, please review for accuracy	☑ PDF prelim, NO FAX [☑ PDF Invoice ☑ EQUIS ————————————————————————————————————
Customer Ex	eter, Town of		and write in any needed changes	e-mail Login Confirmation	loo V\$T M□
	wn Office, 13 Newfie	elds Rd.	,	Samples Collected by: A	NORRW TARAN
City Ex	eter NH 03833-2792	2		Chiha ha	11/7/17 1640 Jan mitor
Phone 778-0591	Fax 772-	4709	QC deliverables		Date/Time Received by
Email: jmates@exe	ternh.gov		□A □A+ 図B □B+ □C □PC	Relinquished by	Date/Time Received by
Direct	East	ern Analytical	Inc. www.easternanalytical.com 800.28	'.0525 customerservice@easter	rnanalytical.com

CHAIN-OF-CUSTODY RECORD

175643

	Date/Time				
Sample IDs	Composites need start and stop dates/times	Matrix	Parameters and Sample Notes		# of containers
GZ-2L	11/7/17	aqueous	AqTot/CI/NO3/TKN/ICPMets.As.Fe.Mn.Ba.Cd.Cr.Pb.Se.		
	1428	Grab or Comp	* TOTAL METALS	YIELD	
Sampler confirm	s ID and parameters	s are accurate	Circle preservative/s HCL ANO A2SO NaOH MEOH Na	a ₂ S ₂ O ₃ ICE	Dissolved Sample Field Filtered
GZ-3L	11/7/17	aqueous	AqTot/Cl/NO3/TKN/ICPMets.As.Fe.Mn.Ba.Cd.Cr.Pb.Se.	Ag.Hg/VNH8260CFullList/V826	OSIM14DIOXANE 7
	1418	Grab or Comp			
Sampler confirm	s ID and parameters	s are accurate	Circle preservative/s: ACL ANO (H,SO) NaOH MEOH N	a ₂ S ₂ O ₃ ICE	Dissolved Sample Field Filtered
GZ-104	11/7/17	aqueous Gray or Comp	AqTot/CI/NO3/TKN/VNH8260CFullList/V8260SIM14DIO AqDis/ICPMets.As.Fe.Mn.Ba.Cd.Cr.Pb.Se.Ag.Hg	XANE	7
Sampler confirm	トラフコ ns ID and parameters	s are accurate	Circle preservative/s: (HCL) HNO, H,SO NaOH MEOH N	a ₂ S ₂ O ₃ ICE	Dissolved Sample Field Filtered
ĠZ-201	11/7/17	aqueous Grab or Comp	AqTot/CI/NO3/TKN/VNH8260CFullList/V8260SIM14DIO AqDis/ICPMets.As.Fe.Mn.Ba.Cd.Cr.Pb.Se.Ag.Hg	XANE	7
Sampler confirm		s are accurate	Circle preservative/s: HCL HNO, H,SO NaOH MEOH N	a ₂ S ₂ O ₃ ICE	Dissolved Sample Field Filtered
Please en	sure this auto CO	C is accurate,	adheres to permit or sampling requirements for a	this sampling event, and m	nodify as necessary.
EAI Project ID 31			Results Needed by: Preferred date	ReportingOptions	
Project Name Cro	ss Road Landfill No	ov 2017	Notes:	☐ HC ☑ EDD PDF	□ NO FAX PO# 4335-309 □ Partial FAX Quote#: 1013778
State NH			Attn sampler: Auto chain of custody provided	☑ EDD email	☑ PDF Invoice

for your convenience, please review for accuracy

and write in any needed changes

Address Town Office, 13 Newfields Rd.
City Exeter NH 03833-2792
Phone 778-0591 Fax 772-4709

Client (Pro Mgr) Jennifer Mates

Email: jmates@exeternh.gov

Direct

Customer Exeter, Town of

QC deliverables

□ A □ A+ 図 B □ B+ □ C □ PC

EDD FDF

| And |

Eastern Analytical, Inc.

www.easternanalytical.com | 800.287.0525 | customerservice@easternanalytical.com

Date/Time

CHAIN-OF-CUSTODY RECORD

1756 43

EXENH

	Composites need start				
Sample IDs	and stop dates/times	Matrix	Parameters and Sample Notes		# of containers
GZ-202A	11/7/11	aqueous Grab or Comp	AqTot/CI/NO3/TKN/VNH8260CFullList/V8260SIM14DIO AqDis/ICPMets.As.Fe.Mn.Ba.Cd.Cr.Pb.Se.Ag.Hg	XANE	7
	1610				
Sampler confirm	ns ID and parameter	s are accurate	Circle preservative/s: ACU (NO) A,SO NaOH MEOH N	a ₂ S ₂ O ₃ ICE Disso	lved Sample Field Filtered 💢
P-9R	1 11/7/17		AqTot/CI/NO3/TKN/VNH8260CFullList/V8260SIM14DIC	XANE	7
		aqueous	AqDis/ICPMets.As.Fe.Mn.Ba.Cd.Cr.Pb.Se.Ag.Hg		
	1548	Grab or Comp			
Sampler confirm	ns ID and parameter	s are accurate	Circle preservative/s(HC)(HNO)(H ₂ SQ) NaOH MEOH N	Disso	lved Sample Field Filtered 🔀
SW-17	1 11/1/10	1	AqTot/Cl/NO3/TKN/ICPMets.As.Fe.Mn.Ba.Cd.Cr.Pb.Se.		DIOXANE []
3VV-17	11/1/11	aqueous	Adjoing 1 Mayor Mets. As. 1 C. Mil. Ba. 3 d. 3 f. 1 b. 3 d.	19, 19, 114 1020001 uniciou 1020001111 1	7
	1307	Grab or Comp			
V			Circle preservative/s:(HC)(HNO)(H ₂ SO) NaOH MEOH N	Disso	lved Sample Field Filtered
,	ns ID and parameter	s are accurate			
P-2R (South Spring)	17/1/17	aqueous	AqTot/CI/NO3/TKN/VNH8260CFullList/V8260SIM14DIC AqDis/ICPMets.As.Fe.Mn.Ba.Cd.Cr.Pb.Se.Ag.Hg	XANE	7
	1520	Grab or Comp	Addis/101 Mets.As.1 C.Min.ba.ou.or.1 b.oc.//g.ng		المستسا
√ 1	1,750	İ		Disso	olved Sample Field Filtered 📈
Sampler confirm	ns ID and parameter	s are accurate	Circle preservative/s HCL HNO H,SO NaOH MEOH N	a,S,O ₃ ICE	
Please er	sure this auto CO	C is accurate,	adheres to permit or sampling requirements for	this sampling event, and modify a	is necessary.
EAI Project ID 31			Results Needed by: Preferred date	ReportingOptions	
Project Name Cro	ss Road Landfill No	ov 2017	Notes:	□нс □ио	
.					tial FAX Quote#: 1013778
State NH			Attn sampler: Auto chain of custody provided	│ ☑ EDD email ☑ PDF │ ☑ PDF prelim, NO FAX □ EQI	F Invoice
Client (Pro Mgr) Je			for your convenience, please review for accuracy	e-mail Login Confirmation	TempC
Customer Ex			and write in any needed changes	Λ.	ICE Y NO
	wn Office, 13 Newfi				
City Ex	eter NH 03833-279	2		Relinguished by Date/T	1040 11 104011 0
Phone 778-0591	Fax 772-	4709	QC deliverables	An Bulen 11-7-17	17:55
Email: jmates@exe	ternh.gov		□ A □ A+ 図 B □ B+ □ C □ PC	Relinquished by Date/T	
Direct					•
	Fast	ern Analytical.	Inc. www.easternanalytical.com 800.287	.U525 customerservice@easternanal	vtical.com

CHAIN-OF-CUSTODY RECORD

175643 EXENH

Date/Time

	Composites need start				
Sample IDs	and stop dates/times	Matrix	Parameters and Sample Notes	# o	f containers
SW-13	1220	aqueous Grab or Comp	AqTot/Cl/NO3/TKN/ICPMets.As.Fe.Mn.Ba.Cd.Cr.Pb.Se.	Ag.Hg/VNH8260CFullList/V8260SIM14DIOXANE	7
	1,9=0.0			51 1 10 15 15	
Sampler confirm	ns ID and parameters	s are accurate	Circle preservative/s: HCD KNO HSO NaOH MEOH N	a ₂ S ₂ O ₃ ICE Dissolved Sample Field F	iltered
GMW-11	N/A	aqueous Grab or Comp	AqTot/Cl/NO3/TKN/VNH8260CFullList/V8260SIM14DIC AqDis/ICPMets.As.Fe.Mn.Ba.Cd.Cr.Pb.Se.Ag.Hg	No YIELD	X
Samular a anti-	 D		Circle masses welf to feel to the thing the Co. No. O. M. C. I. M. C. I. N.	Dissolved Sample Field F	iltered
***	ns ID and parameters	s are accurate	Circle preservative/s: HCL HNO ₃ H ₂ SO ₄ NaOH MEOH N	a,S,O₃ ICE	
Trip Blank - 8260	9/22/17	aqueous Grab or Comp	AqTot/VNH8260CFullList		A
Samular acution	EAT	l 	Circle management is for the UNIO HICO NEOU MEOU N	Dissolved Sample Field F	iltered
	ns ID and parameters	i	Circle preservative/s: ACD HNO ₃ H ₂ SO ₄ NaOH MEOH N	8,5,0, ICE	
Trip Blank - 1,4 Dioxane	11/7/17	aqueous	AqTot/V8260SIM14DIOXANE		🗟
Dioxane	9/18/17	Grab or Comp			<u> </u>
r st i	8:00			Dissolved Sample Field F	iltered [
Sampler confirm	ns ID and parameters	s are accurate	Circle preservative/s: HCL HNO ₃ H ₂ SO ₄ NaOH MEOH N	a ₂ S ₂ O ₃ ICE	intered
Please er	nsure this auto CO	C is accurate.	adheres to permit or sampling requirements for	this sampling event, and modify as necessary.	
EAI Project ID 31			, ,		
-	Deed Leaden I Ne	0047	Results Needed by: Preferred date	ReportingOptions	W 422E 200
Project Name Cro	ss Road Landfill No	OV 2017	Notes:	M spp pps)# 4335-309
State NH				☐ EDD F DI ☐ T attal T AX Quotes	#: 1013778
Client (Pro Mgr) Je	nnifer Mates		Attn sampler: Auto chain of custody provided	☑ PDF prelim, NO FAX ☐ EQUIS	၁. ့ င
Customer Ex			for your convenience, please review for accuracy and write in any needed changes	e-mail Login Confirmation Temp	
	wn Office, 13 Newfie	lde Dd	and write in any needed changes	Samples Collected by: ANDREW TARANI	YÀÖN□
					24901
J	eter NH 03833-2792				ved by
Phone 778-0591	Fax 772-4	1709	QC deliverables	As buton 11-7-17 17:55	in the
Email: jmates@exe	ternh.gov		□A □A+ 図B □B+ □C □PC	(Little	ved by
Direct				7.0505 t	
	Easte	ern Analytical,	inc. www.easternanalytical.com 800.287	7.0525 customerservice@easternanalytical.com	

Jennifer Mates
Exeter, Town of
Town Office, 13 Newfields Rd.
Exeter, NH 03833-2792

Subject: Laboratory Report

Eastern Analytical, Inc. ID: 175643

Client Identification: Cross Road Landfill | Nov 2017

Date Received: 11/7/2017

Dear Ms. Mates:

Enclosed please find the laboratory report for the above identified project. All analyses were performed in accordance with our QA/QC Program. Unless otherwise stated, holding times, preservation techniques, container types, and sample conditions adhered to EPA Protocol. Samples which were collected by Eastern Analytical, Inc. (EAI) were collected in accordance with approved EPA procedures. Eastern Analytical, Inc. certifies that the enclosed test results meet all requirements of NELAP and other applicable state certifications. Please refer to our website at www.eailabs.com for a copy of our NELAP certificate and accredited parameters.

The following standard abbreviations and conventions apply to all EAI reports:

Solid samples are reported on a dry weight basis, unless otherwise noted

: "less than" followed by the reporting limit

> : "greater than" followed by the reporting limit

%R: % Recovery

Eastern Analytical Inc. maintains certification in the following states: Connecticut (PH-0492), Maine (NH005), Massachusetts (M-NH005), New Hampshire/NELAP (1012), Rhode Island (269) and Vermont (VT1012).

The following information is contained within this report: Sample Conditions summary, Analytical Results/Data, Quality Control data (if requested) and copies of the Chain of Custody. This report may not be reproduced except in full, without the the written approval of the laboratory.

If you have any questions regarding the results contained within, please feel free to directly contact me or the chemist(s) who performed the testing in question. Unless otherwise requested, we will dispose of the sample(s) 30 days from the sample receipt date.

We appreciate this opportunity to be of service and look forward to your continued patronage.

Sincerely,

Lorraine Olashaw, Lab Director

Date

of pages (excluding cover letter)

SAMPLE CONDITIONS PAGE

Client: Exeter, Town of

Client Designation: Cross Road Landfill | Nov 2017

Received on ice or cold packs (Yes/No): Y

EALID#: 175643

Acceptable temperature range (°C): 0-6

Temperature upon receipt (°C): 2.0

Lab ID	Sample ID	Date Received	Date Sampled	Sample % Matrix V	-	Exceptions/Comments (other than thermal preservation)
175643.01	RFW-2	11/7/17	11/7/17	aqueous		Adheres to Sample Acceptance Policy
175643.02	RFW-3	11/7/17	11/7/17	aqueous		Adheres to Sample Acceptance Policy
175643.03	RFW-4	11/7/17	11/7/17	aqueous		Adheres to Sample Acceptance Policy
175643.04	GZ-1L	11/7/17	11/7/17	aqueous		Adheres to Sample Acceptance Policy
175643.05	GZ-2L	11/7/17	11/7/17	aqueous		Adheres to Sample Acceptance Policy
175643.06	GZ-3L	11/7/17	11/7/17	aqueous		Adheres to Sample Acceptance Policy
175643.07	GZ-104	11/7/17	11/7/17	aqueous		Adheres to Sample Acceptance Policy
175643.08	GZ-201	11/7/17	11/7/17	aqueous		Adheres to Sample Acceptance Policy
175643.09	GZ-202A	11/7/17	11/7/17	aqueous		Adheres to Sample Acceptance Policy
175643.1	P-9R	11/7/17	11/7/17	aqueous		Adheres to Sample Acceptance Policy
175643.11	SW-17	11/7/17	11/7/17	aqueous		Adheres to Sample Acceptance Policy
175643.12	P-2R (South Spring)	11/7/17	11/7/17	aqueous		Adheres to Sample Acceptance Policy
175643.13	SW-13	11/7/17	11/7/17	aqueous		Adheres to Sample Acceptance Policy
175643.14	Trip Blank - 8260	11/7/17	9/20/17	aqueous		Adheres to Sample Acceptance Policy
175643.15	Trip Blank - 1,4 Dioxane	11/7/17	9/18/17	aqueous		Adheres to Sample Acceptance Policy

Samples were properly preserved and the pH measured when applicable unless otherwise noted. Analysis of solids for pH, Flashpoint, Ignitability, Paint Filter, Corrosivity, Conductivity and Specific Gravity are reported on an "as received" basis.

Immediate analyses, pH, Total Residual Chlorine, Dissolved Oxygen and Sulfite, performed at the laboratory were run outside of the recommended 15 minute hold time.

All results contained in this report relate only to the above listed samples.

References include:

- 1) EPA 600/4-79-020, 1983
- 2) Standard Methods for Examination of Water and Wastewater, 20th Edition, 1998 and 22nd Edition, 2012
- 3) Test Methods for Evaluating Solid Waste SW 846 3rd Edition including updates IVA and IVB
- 4) Hach Water Analysis Handbook, 2nd edition, 1992

EAI ID#: 175643

Client: Exeter, Town of

Sample ID:	RFW-2	RFW-3	RFW-4	GZ-1L	GZ-2L	GZ-3L	GZ-104
Lab Sample ID:	175643.01	175643.02	175643.03	175643.04	175643.05	175643.06	175643.07
Matrix:	aqueous						
Date Sampled:	11/7/17	11/7/17	11/7/17	11/7/17	11/7/17	11/7/17	11/7/17
Date Received:	11/7/17	11/7/17	11/7/17	11/7/17	11/7/17	11/7/17	11/7/17
Units:	ug/L						
Date of Analysis:	11/9/17	11/9/17	11/9/17	11/9/17	11/9/17	11/9/17	11/9/17
Analyst:	BAM						
Method:	8260C						
Dilution Factor:	1	1	1	1	1	1	1
Dichlorodifluoromethane	< 5	< 5	< 5	< 5	< 5	< 5	< 5
Chloromethane	< 2	< 2	< 2	< 2	< 2	< 2	< 2
Vinyl chloride	< 2 < 2						
Bromomethane Chloroethane	< 2 < 5	< 5	< 2 < 5	< 5	< 5	< 5	< 5
Trichlorofluoromethane	< 5	< 5	< 5	< 5	< 5	< 5	< 5
Diethyl Ether	< 5	< 5	< 5	< 5	, < 5	< 5	< 5
Acetone	< 10	< 10	< 10	< 10	< 10	< 10	< 10
1,1-Dichloroethene	< 1 < 30						
tert-Butyl Alcohol (TBA) Methylene chloride	< 5	< 5	< 5	< 5	< 5	< 5	< 5
Carbon disulfide	< 2	< 2	< 2	< 2	< 2	< 2	< 2
Methyl-t-butyl ether(MTBE)	< 1	1	< 1	< 1	< 1	< 1	< 1
Ethyl-t-butyl ether(ETBE)	< 5	< 5	< 5	< 5	< 5	< 5	< 5
Isopropyl ether(DIPE)	< 5	< 5	< 5 < 5	< 5 < 5	< 5 < 5	< 5 < 5	< 5 < 5
tert-amyl methyl ether(TAME) trans-1,2-Dichloroethene	< 5 < 1	< 5 < 1	< 1	< 1	< 1	< 1	< 1
1,1-Dichloroethane	< 1	< 1	< 1	< 1	< 1	< 1	< 1
2,2-Dichloropropane	< 1	< 1	< 1	< 1	< 1	< 1	< 1
cis-1,2-Dichloroethene	< 1	< 1	< 1	< 1	< 1	< 1	< 1
2-Butanone(MEK)	< 10	< 10	< 10	< 10	< 10	< 10 < 1	< 10 < 1
Bromochloromethane Tetrahydrofuran(THF)	< 1 < 10	< 10	< 10				
Chloroform	< 1	< 1	< 1	< 1	< 1	< 1	< 1
1,1,1-Trichloroethane	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Carbon tetrachloride	< 1	< 1	< 1	< 1	< 1	< 1	< 1
1,1-Dichloropropene	< 1	< 1	< 1	< 1	< 1	< 1	< 1 < 1
Benzene 1,2-Dichloroethane	< 1 < 1	< 1					
Trichloroethene	< 1	< 1	< 1	< 1	< 1	< 1	< 1
1,2-Dichloropropane	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Dibromomethane	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Bromodichloromethane	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,4-Dioxane	< 50 < 10						
4-Methyl-2-pentanone(MIBK) cis-1,3-Dichloropropene	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Toluene	< 1	< 1	< 1	< 1	< 1	< 1	< 1
trans-1,3-Dichloropropene	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1,2-Trichloroethane	< 1	< 1	< 1	< 1	< 1	< 1	< 1
2-Hexanone	< 10	< 10	< 10 < 1	< 10	< 10 < 1	< 10 < 1	< 10 < 1
Tetrachloroethene 1,3-Dichloropropane	< 1 < 1	< 1 < 1	< 1 < 1	< 1 < 1	< 1	< 1	< 1
Dibromochloromethane	< 1	< 1	< 1	< 1	< 1	< 1	< 1
1,2-Dibromoethane(EDB)	< 2	< 2	< 2	< 2	< 2	< 2	< 2
Chlorobenzene	< 1	< 1	< 1	< 1	< 1	< 1	< 1
1,1,1,2-Tetrachloroethane	< 1	< 1	< 1	< 1	< 1	< 1	< 1 < 1
Ethylbenzene	< 1	< 1	< 1	< 1	< 1	< 1	2 '

EAIID#: 175643

Client: Exeter, Town of

Sample ID:	RFW-2	RFW-3	RFW-4	GZ-1L	GZ-2L	GZ-3L	GZ-104
Lab Sample ID:	175643.01	175643.02	175643.03	175643.04	175643.05	175643.06	175643.07
Matrix:	aqueous						
Date Sampled:	11/7/17	11/7/17	11/7/17	11/7/17	11/7/17	11/7/17	11/7/17
Date Received:	11/7/17	11/7/17	11/7/17	11/7/17	11/7/17	11/7/17	11/7/17
Units:	ug/L						
Date of Analysis:	11/9/17	11/9/17	11/9/17	11/9/17	11/9/17	11/9/17	11/9/17
Analyst:	BAM						
Method:	8260C						
Dilution Factor:	1	1	1	1	1	1	1
mp-Xylene	< 1	< 1	< 1	< 1	< 1	< 1	< 1
o-Xylene	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Styrene	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Bromoform	< 2	< 2	< 2	< 2	< 2	< 2	< 2
IsoPropylbenzene	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Bromobenzene	< 1	< 1	< 1	< 1	< 1	< 1	< 1
1,1,2,2-Tetrachloroethane	< 1 < 0.5	< 1 < 0.5	< 1	< 1	< 1	< 1 < 0.5	< 1 < 0.5
1,2,3-Trichloropropane n-Propylbenzene	< 0.5 < 1	< 1					
2-Chlorotoluene	< 1	< 1	< 1	< 1	< 1	<.1	< 1
4-Chlorotoluene	< 1	< 1	< 1	< 1	< 1	< 1	< 1
1,3,5-Trimethylbenzene	< 1	< 1	< 1	< 1	< 1	< 1	< 1
tert-Butylbenzene	< 1	< 1	< 1	< 1	< 1	< 1	< 1
1,2,4-Trimethylbenzene	< 1	< 1	< 1	< 1	< 1	< 1	< 1
sec-Butylbenzene	< 1	< 1	< 1	< 1	< 1	< 1	< 1
1,3-Dichlorobenzene	< 1	< 1	< 1	< 1	< 1	< 1	< 1
p-Isopropyltoluene	< 1	< 1	< 1	< 1	< 1	< 1	< 1
1,4-Dichlorobenzene	< 1	< 1	< 1	< 1	< 1	< 1	< 1
1,2-Dichlorobenzene	< 1	< 1	< 1	< 1	< 1	< 1	< 1
n-Butylbenzene	< 1	< 1	< 1	< 1	< 1	< 1	< 1
1,2-Dibromo-3-chloropropane	< 2	< 2	< 2	< 2	< 2	< 2	< 2
1,3,5-Trichlorobenzene	< 1	< 1	< 1	< 1	< 1	< 1	< 1
1,2,4-Trichlorobenzene	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Hexachlorobutadiene	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Naphthalene	< 5	< 5	< 5	< 5	< 5	< 5	< 5
1,2,3-Trichlorobenzene	< 1	< 1	< 1	< 1	< 1	< 1	< 1
4-Bromofluorobenzene (surr)	101 %R	103 %R	101 %R	102 %R	101 %R	101 %R	102 %R
1,2-Dichlorobenzene-d4 (surr)	101 %R	101 %R	100 %R	99 %R	99 %R	99 %R	99 %R
Toluene-d8 (surr)	95 %R						
1,2-Dichloroethane-d4 (surr)	95 %R	95 %R	95 %R	93 %R	96 %R	95 %R	96 %R

EAI ID#: 175643

Client: Exeter, Town of

Sample ID:	GZ-201	GZ-202A	P-9R	SW-17	P-2R (South Spring)	SW-13	Trip Blank - 8260
Lab Sample ID:	175643.08	175643.09	175643.1	175643.11	175643.12	175643.13	175643.14
Matrix:	aqueous	aqueous	aqueous	aqueous	aqueous	aqueous	aqueous
Date Sampled:	11/7/17	11/7/17	11/7/17	11/7/17	11/7/17	11/7/17	9/20/17
Date Received:	11/7/17	11/7/17	11/7/17	11/7/17	11/7/17	11/7/17	11/7/17
Units:		ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
	ug/L					11/9/17	11/9/17
Date of Analysis:	11/9/17	11/9/17	11/9/17	11/9/17	11/9/17		
Analyst:	BAM	BAM	BAM	BAM	BAM	BAM	BAM
Method:	8260C	8260C	8260C	8260C	8260C	8260C	8260C
Dilution Factor:	1	1	1	1	1	1	1
Dichlorodifluoromethane	< 5	< 5	< 5	< 5	< 5	< 5	< 5
Chloromethane	< 2	< 2	< 2	< 2	< 2	< 2 < 2	< 2 < 2
Vinyl chloride Bromomethane	< 2 < 2	< 2	< 2				
Chloroethane	< 5	< 5	< 5	< 5	< 5	< 5	< 5
Trichlorofluoromethane	< 5	< 5	< 5	< 5	< 5	< 5	< 5
Diethyl Ether	< 5	< 5	< 5	< 5	<.5	< 5	< 5
Acetone	< 10	< 10	< 10	< 10	< 10	10	< 10
1,1-Dichloroethene	< 1	< 1	< 1	< 1	< 1 < 30	< 1 < 30	< 1 < 30
tert-Butyl Alcohol (TBA) Methylene chloride	< 30 < 5	< 30 < 5	< 30 < 5	< 30 < 5	< 5	< 5	< 5
Carbon disulfide	< 2	< 2	< 2	< 2	< 2	< 2	< 2
Methyl-t-butyl ether(MTBE)	< 1	1	< 1	< 1	< 1	< 1	< 1
Ethyl-t-butyl ether(ETBE)	< 5	< 5	< 5	< 5	< 5	< 5	< 5
Isopropyl ether(DIPE)	< 5	< 5	< 5	< 5	< 5	< 5	< 5
tert-amyl methyl ether(TAME)	< 5	< 5 < 1	< 5 < 1	< 5 < 1	< 5 < 1	< 5 < 1	< 5 < 1
trans-1,2-Dichloroethene 1,1-Dichloroethane	< 1 < 1	< 1 < 1	< 1	< 1	< 1	< 1	< 1
2,2-Dichloropropane	< 1	< 1	< 1	< 1	< 1	< 1	< 1
cis-1,2-Dichloroethene	< 1	< 1	< 1	< 1	< 1	< 1	< 1
2-Butanone(MEK)	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Bromochloromethane	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Tetrahydrofuran(THF)	< 10	< 10	< 10 < 1	< 10 < 1	< 10 < 1	< 10 < 1	< 10 < 1
Chloroform 1,1,1-Trichloroethane	< 1 < 1	< 1 < 1	< 1	< 1	< 1	< 1	< 1
Carbon tetrachloride	< 1	< 1	< 1	< 1	< 1	< 1	< 1
1,1-Dichloropropene	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Benzene	< 1	< 1	< 1	< 1	< 1	< 1	< 1
1,2-Dichloroethane	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Trichloroethene	< 1	< 1 < 1	< 1 < 1	< 1 < 1	< 1 < 1	< 1 < 1	< 1 < 1
1,2-Dichloropropane Dibromomethane	< 1 < 1	< 1 < 1	< 1	< 1	< 1	< 1	< 1
Bromodichloromethane	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,4-Dioxane	< 50	< 50	< 50	< 50	< 50	< 50	< 50
4-Methyl-2-pentanone(MIBK)	< 10	< 10	< 10	< 10		< 10	< 10
cis-1,3-Dichloropropene	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Toluene	< 1	< 1	< 1	< 1	< 1	< 1 < 0.5	< 1 < 0.5
trans-1,3-Dichloropropene 1,1,2-Trichloroethane	< 0.5 < 1	< 1	< 1				
2-Hexanone	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Tetrachloroethene	< 1	< 1	< 1	< 1		< 1	< 1
1,3-Dichloropropane	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Dibromochloromethane	< 1	< 1	< 1	< 1		< 1	< 1
1,2-Dibromoethane(EDB)	< 2	< 2	< 2	< 2		< 2	< 2
Chlorobenzene	< 1 < 1	< 1 < 1	< 1 < 1				
1,1,1,2-Tetrachloroethane Ethylbenzene	< 1	< 1	< 1	< 1	-	< 1	< 1
Entylbenzene		7 1	- 1	- ,	- 1	. ,	4

EAI ID#: 175643

Client: Exeter, Town of

Sample ID:	GZ-201	GZ-202A	P-9R	SW-17	P-2R (South Spring)	SW-13	Trip Blank - 8260
Lab Sample ID:	175643.08	175643.09	175643.1	175643.11	175643.12	175643.13	175643.14
Matrix:	aqueous	aqueous	aqueous	aqueous	aqueous	aqueous	aqueous
Date Sampled:	11/7/17	11/7/17	11/7/17	11/7/17	11/7/17	11/7/17	9/20/17
Date Received:	11/7/17	11/7/17	11/7/17	11/7/17	11/7/17	11/7/17	11/7/17
Units:	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Date of Analysis:	11/9/17	11/9/17	11/9/17	11/9/17	11/9/17	11/9/17	11/9/17
Analyst:	BAM	BAM	BAM	BAM	BAM	BAM	BAM
Method:	8260C	8260C	8260C	8260C	8260C	8260C	8260C
Dilution Factor:	1	1	1	1	1	1	1
mp-Xylene	< 1	< 1	< 1	< 1	< 1	< 1	< 1
o-Xylene	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Styrene	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Bromoform	< 2 < 1	< 2	< 2	< 2 < 1	< 2 < 1	< 2 < 1	< 2
IsoPropylbenzene Bromobenzene	< 1	< 1 < 1	< 1 < 1	< 1	< 1	< 1 < 1	< 1 < 1
1,1,2,2-Tetrachloroethane	< 1	< 1	< 1	< 1	< 1	< 1	< 1
1,2,3-Trichloropropane	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
n-Propylbenzene	< 1	< 1	< 1	< 1	< 1	< 1	< 1
2-Chlorotoluene	< 1	< 1	< 1	< 1	< 1	< 1	< 1
4-Chlorotoluene	< 1	< 1	< 1	< 1	< 1	< 1	< 1
1,3,5-Trimethylbenzene	< 1	< 1	< 1	< 1	< 1	< 1	< 1
tert-Butylbenzene	< 1	< 1	< 1	< 1	< 1	< 1	< 1
1,2,4-Trimethylbenzene	< 1	< 1	< 1	< 1	< 1	< 1	< 1
sec-Butylbenzene 1,3-Dichlorobenzene	< 1 < 1	< 1 < 1	< 1 < 1	< 1 < 1	< 1 < 1	< 1 < 1	< 1 < 1
p-Isopropyltoluene	< 1	< 1	66	< 1	< 1	< 1	< 1
1,4-Dichlorobenzene	< 1	< 1	< 1	< 1	< 1	< 1	< 1
1,2-Dichlorobenzene	< 1	< 1	< 1	< 1	< 1	< 1	< 1
n-Butylbenzene	< 1	< 1	< 1	< 1	< 1	< 1	< 1
1,2-Dibromo-3-chloropropane	< 2	< 2	< 2	< 2	< 2	< 2	< 2
1,3,5-Trichlorobenzene	< 1	< 1	< 1	< 1	< 1	< 1	< 1
1,2,4-Trichlorobenzene	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Hexachlorobutadiene	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Naphthalene	< 5	< 5	< 5	< 5	< 5	< 5	< 5
1,2,3-Trichlorobenzene 4-Bromofluorobenzene (surr)	< 1 101 %R	< 1 102 %R	< 1 102 %R	< 1 101 %R	< 1 103 %R	< 1 100 %R	< 1 100 %R
1,2-Dichlorobenzene-d4 (surr)	101 %R 100 %R	102 %R 102 %R	102 %R 99 %R	101 %R 100 %R	103 %R 101 %R	100 %R 99 %R	100 %R 99 %R
Toluene-d8 (surr)	95 %R	96 %R	96 %R	93 %R	95 %R	94 %R	94 %R
1,2-Dichloroethane-d4 (surr)	96 %R	94 %R	95 %R	99 %R	97 %R	98 %R	96 %R

EAI ID#: 175643

Client: Exeter, Town of

Parameter Name	Blank	LCS	LCSD	Analysis Date	Units	Limits	RPD	Method
Dichlorodifluoromethane	< 5	18 (90 %R)	19 (93 %R) (3 RPD)	11/9/2017	ug/L	40 - 160	20	8260C
Chloromethane	< 2	16 (80 %R)	16 (81 %R) (1 RPD)	11/9/2017	ug/L	40 - 160	20	8260C
Vinyl chloride	< 2	20 (98 %R)	21 (103 %R) (5 RPD)	11/9/2017	ug/L	70 - 130	20	8260C
Bromomethane	< 2	15 (75 %R)	16 (79 %R) (5 RPD)	11/9/2017	ug/L	40 - 160	20	8260C
Chloroethane	< 5	20 (101 %R)	20 (102 %R) (2 RPD)	11/9/2017	ug/L	70 - 130	20	8260C
Trichlorofluoromethane	< 5	18 (92 %R)	18 (90 %R) (3 RPD)	11/9/2017	ug/L	70 - 130	20	8260C
Diethyl Ether	< 5	18 (89 %R)	18 (92 %R) (3 RPD)	11/9/2017	ug/L	70 - 130	20	8260C
Acetone	< 10	20 (110 %R)	20 (108 %R) (1 RPD)		ug/L	40 - 160	20	8260C
1,1-Dichloroethene	< 1	17 (84 %R)	17 (84 %R) (0 RPD)		ug/L	70 - 130	20	8260C
tert-Butyl Alcohol (TBA)	< 30	80 (76 %R)	80 (77 %R) (2 RPD)		ug/L	70 - 130	20	8260C
Methylene chloride	< 5	18 (92 %R)	19 (93 %R) (1 RPD)		ug/L	70 - 130	20	8260C
Carbon disulfide	< 2	19 (95 %R)	20 (99 %R) (4 RPD)		ug/L	70 - 130	20	8260C
Methyl-t-butyl ether(MTBE)	< 1	18 (90 %R)	18 (91 %R) (0 RPD)		ug/L	70 - 130	20	8260C
Ethyl-t-butyl ether(ETBE)	< 5	21 (103 %R)	21 (104 %R) (1 RPD)		ug/L	70 - 130	20	8260C
Isopropyl ether(DIPE)	< 5	22 (110 %R)	22 (111 %R) (1 RPD)		ug/L	70 - 130	20	8260C
tert-amyl methyl ether(TAME)	< 5	20 (101 %R)	20 (102 %R) (1 RPD)		ug/L	70 - 130	20	8260C
trans-1,2-Dichloroethene	< 1	19 (97 %R)	19 (97 %R) (0 RPD)		ug/L	70 - 130	20	8260C
1,1-Dichloroethane	< 1	20 (98 %R)	20 (98 %R) (1 RPD)		ug/L	70 - 130	20	8260C
2,2-Dichloropropane	< 1	* 14 (68 %R)	* 14 (69 %R) (2 RPD)		ug/L	70 - 130	20	8260C
cis-1,2-Dichloroethene	· < 1	22 (108 %R)	22 (109 %R) (1 RPD)		ug/L	70 - 130	20	8260C
2-Butanone(MEK)	< 10	20 (90 %R)	20 (92 %R) (2 RPD)		ug/L	40 - 160	20	8260C
Bromochloromethane	< 1	19 (97 %R)	19 (95 %R) (2 RPD)		ug/L	70 - 130	20	8260C
Tetrahydrofuran(THF)	< 10	20 (92 %R)	20 (95 %R) (2 RPD)		ug/L	70 - 130	20	8260C
Chloroform	< 1	20 (99 %R)	20 (101 %R) (2 RPD)		ug/L	70 - 130	20	8260C
1,1,1-Trichloroethane	< 1	19 (95 %R)	19 (97 %R) (2 RPD)		ug/L	70 - 130	20	8260C
Carbon tetrachloride	< 1	18 (92 %R)	19 (97 %R) (5 RPD)		ug/L	70 - 130	20	8260C
1,1-Dichloropropene	< 1	20 (101 %R)	21 (103 %R) (2 RPD)		ug/L	70 - 130	20	8260C
Benzene	< 1	20 (102 %R)	21 (104 %R) (2 RPD)		ug/L	70 - 130	20	8260C
1,2-Dichloroethane	< 1	19 (94 %R)	19 (97 %R) (3 RPD)		ug/L	70 - 130	20	8260C
Trichloroethene	< 1	19 (95 %R)	20 (98 %R) (3 RPD)		ug/L	70 - 130	20	8260C
1,2-Dichloropropane	< 1	21 (106 %R)	22 (108 %R) (2 RPD)		ug/L	70 - 130	20	8260C
Dibromomethane	< 1	20 (98 %R)	20 (101 %R) (2 RPD)		ug/L	70 - 130 70 - 130	20	8260C
Bromodichloromethane	< 0.5	21 (104 %R)	22 (108 %R) (4 RPD)		ug/L	70 - 130	20	8260C
1,4-Dioxane	< 50	< 50 (104 %R)	< 50 (83 %R) (23 RPD) !		ug/L	40 - 160	20	8260C
4-Methyl-2-pentanone(MIBK)	< 10	20 (91 %R)	20 (92 %R) (2 RPD)		ug/L	40 - 160	20	8260C
cis-1,3-Dichloropropene	< 0.5	19 (96 %R)	20 (92 %R) (2 RPD) 20 (98 %R) (2 RPD)		ug/L ug/L	70 - 130	20	8260C
Toluene	< 1				ug/L	70 - 130	20	8260C
trans-1,3-Dichloropropene	< 0.5	18 (90 %R) 17 (83 %R)	19 (93 %R) (4 RPD) 17 (85 %R) (2 RPD)		ug/L	70 - 130	20	8260C
1,1,2-Trichloroethane	< 1		17 (65 %R) (2 RPD) 19 (93 %R) (3 RPD)		-	70 - 130 70 - 130		8260C
, ,		18 (90 %R)			ug/L		20	
2-Hexanone	< 10	20 (88 %R)	20 (92 %R) (5 RPD)		ug/L	40 - 160	20	8260C
Tetrachloroethene	< 1	17 (83 %R)	17 (86 %R) (4 RPD)		ug/L	70 - 130	20	8260C
1,3-Dichloropropane	< 1	18 (90 %R)	19 (93 %R) (2 RPD)		ug/L	70 - 130	20	8260C
Dibromochloromethane	< 1	21 (107 %R)	22 (111 %R) (4 RPD)		ug/L	70 - 130	20	8260C
1,2-Dibromoethane(EDB)	< 2	18 (90 %R)	18 (92 %R) (2 RPD)		ug/L	70 - 130	20	8260C
Chlorobenzene	< 1	17 (87 %R)	18 (90 %R) (4 RPD)		ug/L	70 - 130	20	8260C
1,1,1,2-Tetrachloroethane	< 1	18 (88 %R)	18 (91 %R) (4 RPD)	11/9/2017	ug/L	70 - 130	20	82 6 0C

Client: Exeter, Town of

Client Designation: Cross Road Landfill | Nov 2017

Parameter Name	Blank	LCS	LCSD	Analysis Date	Units	Limits	RPD	Method
Ethylbenzene	< 1	18 (89 %R)	19 (94 %R) (4 RPD)	11/9/2017	ug/L	70 - 130	20	8260C
mp-Xylene	< 1	35 (86 %R)	36 (90 %R) (4 RPD)	11/9/2017	ug/L	70 - 130	20	8260C
o-Xylene	< 1	18 (89 %R)	18 (91 %R) (3 RPD)	11/9/2017	ug/L	70 - 130	20	8260C
Styrene	< 1	* 14 (68 %R)	14 (70 %R) (3 RPD)	11/9/2017	ug/L	70 - 130	20	8260C
Bromoform	< 2	19 (96 %R)	20 (99 %R) (3 RPD)	11/9/2017	ug/L	70 - 130	20	8260C
IsoPropylbenzene	< 1	17 (87 %R)	18 (90 %R) (3 RPD)	11/9/2017	ug/L	70 - 130	20	8260C
Bromobenzene	< 1	17 (84 %R)	17 (85 %R) (1 RPD)	11/9/2017	ug/L	70 - 130	20	8260C
1,1,2,2-Tetrachloroethane	< 1	17 (87 %R)	17 (86 %R) (1 RPD)	11/9/2017	ug/L	70 - 130	20	8260C
1,2,3-Trichloropropane	< 0.5	16 (81 %R)	17 (83 %R) (2 RPD)	11/9/2017	ug/L	70 - 130	20	8260C
n-Propylbenzene	< 1	17 (86 %R)	18 (88 %R) (2 RPD)	11/9/2017	ug/L	70 - 130	20	8260C
2-Chlorotoluene	< 1	17 (84 %R)	17 (86 %R) (2 RPD)	11/9/2017	ug/L	70 - 130	20	8260C
4-Chlorotoluene	< 1	17 (85 %R)	17 (86 %R) (1 RPD)	11/9/2017	ug/L	70 - 130	20	8260C
1,3,5-Trimethylbenzene	< 1	17 (83 %R)	17 (85 %R) (3 RPD)	11/9/2017	ug/L	70 - 130	20	8260C
tert-Butylbenzene	< 1	16 (82 %R)	17 (84 %R) (2 RPD)	11/9/2017	ug/L	70 - 130	20	8260C
1,2,4-Trimethylbenzene	< 1	17 (85 %R)	17 (86 %R) (2 RPD)	11/9/2017	ug/L	70 - 130	20	8260C
sec-Butylbenzene	< 1	16 (80 %R)	16 (82 %R) (2 RPD)	11/9/2017	ug/L	70 - 130	20	8260C
1,3-Dichlorobenzene	< 1	16 (81 %R)	16 (82 %R) (1 RPD)	11/9/2017	ug/L	70 - 130	20	8260C
p-Isopropyltoluene	< 1	16 (79 %R)	16 (81 %R) (3 RPD)	11/9/2017	ug/L	70 - 130	20	8260C
1,4-Dichlorobenzene	< 1	16 (80 %R)	16 (82 %R) (3 RPD)	11/9/2017	ug/L	70 - 130	20	8260C
1,2-Dichlorobenzene	< 1	16 (80 %R)	16 (81 %R) (2 RPD)	11/9/2017	ug/L	70 - 130	20	8260C
n-Butylbenzene	< 1	15 (74 %R)	15 (75 %R) (1 RPD)	11/9/2017	ug/L	70 - 130	20	8260C
1,2-Dibromo-3-chloropropane	< 2	15 (77 %R)	16 (78 %R) (2 RPD)	11/9/2017	ug/L	70 - 130	20	8260C
1,3,5-Trichlorobenzene	< 1	* 13 (66 %R)	* 14 (68 %R) (3 RPD)	11/9/2017	ug/L	70 - 130	20	8260C
1,2,4-Trichlorobenzene	< 1	* 12 (59 %R)	* 12 (60 %R) (2 RPD)	11/9/2017	ug/L	70 - 130	20	8260C
Hexachlorobutadiene	< 0.5	* 10 (51 %R)	* 11 (54 %R) (7 RPD)	11/9/2017	ug/L	70 - 130	20	8260C
Naphthalene	< 5	14 (70 %R)	14 (71 %R) (1 RPD)	11/9/2017	ug/L	70 - 130	20	8260C
1,2,3-Trichlorobenzene	< 1	* 11 (56 %R)	* 12 (58 %R) (3 RPD)	11/9/2017	ug/L	70 - 130	20	8260C
4-Bromofluorobenzene (surr)	101 %R	104 %R	105 %R	11/9/2017	% Rec	70 - 130	20	8260C
1,2-Dichlorobenzene-d4 (surr)	101 %R	103 %R	102 %R	11/9/2017	% Rec	70 - 130	20	8260C
Toluene-d8 (surr)	92 %R	94 %R	93 %R	11/9/2017	% Rec	70 - 130	20	8260C
1,2-Dichloroethane-d4 (surr)	95 %R	94 %R	92 %R	11/9/2017	% Rec	70 - 130	20	8260C

Samples were extracted and analyzed within holding time limits.

Instrumentation was calibrated in accordance with the method requirements.

The method blanks were free of contamination at the reporting limits.

Sample surrogate recoveries met the above stated criteria.

The associated matrix spikes and/or Laboratory Control Samples met acceptance criteria.

There were no exceptions in the analyses, unless noted.

*/! Flagged analyte recoveries deviated from the QA/QC limits. Unless noted below, flagged analytes that exceed acceptance limits in the Quality Control sample were not detected in the field samples.

Analytes that exceed limits high but are not detected in the field samples do not impact the data. For analytes that show low recovery and are not detected in the field samples, a low point calibration standard has been analyzed to support the reporting limit.

EAI ID#: 175643

EAI ID#: 175643

Client: Exeter, Town of

Sample ID:	RFW-2	RFW-3	RFW-4	GZ-1L	GZ-2L	GZ-3L	GZ-104
Lab Sample ID:	175643.01	175643.02	175643.03	175643.04	175643.05	175643.06	175643.07
Matrix:	aqueous	aqueous	aqueous	aqueous	aqueous	aqueous	aqueous
Date Sampled:	11/7/17	11/7/17	11/7/17	11/7/17	11/7/17	11/7/17	11/7/17
Date Received:	11/7/17	11/7/17	11/7/17	11/7/17	11/7/17	11/7/17	11/7/17
Units:	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Date of Analysis:	11/9/17	11/9/17	11/9/17	11/9/17	11/9/17	11/9/17	11/9/17
Analyst:	VG	VG	VG	VG	VG	VG	VG
Method:	8260B SIM	8260B SIM	8260B SIM	8260B SIM	8260B SIM	8260B SIM	8260B SIM
Dilution Factor:	1	1	1	1	1	1	1
1,4-Dioxane 4-Bromofluorobenzene (surr) Toluene-d8 (surr)	< 0.25 1 05 %R 96 %R	2.2 105 %R 96 %R	3.2 104 %R 96 %R	< 0.25 105 %R 96 %R	< 0.25 104 %R 97 %R	< 0.25 101 %R 95 %R	0.71 102 %R 95 %R

EAIID#: 175643

Client: Exeter, Town of

Sample ID:	GZ-201	GZ-202A	P-9R	SW-17	P-2R (South Spring)	SW-13	Trip Blank - 1,4 Dioxane
Lab Sample ID:	175643.08	175643.09	175643.1	175643.11	175643.12	175643.13	175643.15
Matrix:	aqueous	aqueous	aqueous	aqueous	aqueous	aqueous	aqueous
Date Sampled:	11/7/17	11/7/17	11/7/17	11/7/17	11/7/17	11/7/17	9/18/17
Date Received:	11/7/17	11/7/17	11/7/17	11/7/17	11/7/17	11/7/17	11/7/17
Units:	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Date of Analysis:	11/9/17	11/9/17	11/9/17	11/9/17	11/9/17	11/9/17	11/9/17
Analyst:	VG	VG	VG	VG	VG	VG	VG
Method:	8260B SIM	8260B SIM	8260B SIM	8260B SIM	8260B SIM	8260B SIM	8260B SIM
Dilution Factor:	1	1	1	1	1	1	. 1
1,4-Dioxane 4-Bromofluorobenzene (surr) Toluene-d8 (surr)	< 0.25 106 %R 96 %R	2.0 105 %R 96 %R	1.4 107 %R 96 %R	1.3 104 %R 96 %R	1.4 106 %R 96 %R	< 0.25 105 %R 96 %R	< 0.25 105 %R 96 %R

Client: Exeter, Town of

Client Designation: Cross Road Landfill | Nov 2017

Parameter Name	Blank	LCS	LCSD	Date of Units Analysis	Limits RPD	Method
1,4-Dioxane	< 0.25	6.0 (119 %R)	5.7 (113 %R) (5 RPD)	ug/L 11/9/17	70 - 130 20	8260B SIM
4-Bromofluorobenzene (surr)	105 %R	110 %R	109 %R	% Rec 11/9/17	70 - 130 50	8260B SIM
Toluene-d8 (surr)	96 %R	97 %R	97 %R	% Rec 11/9/17	70 - 130 50	8260B SIM

Samples were analyzed within holding times unless noted on the sample results page.

Instrumentation was calibrated in accordance with the method requirements.

The method blanks were free of contamination at the reporting limits.

The associated matrix spikes and/or Laboratory Control Samples met the above stated criteria.

Exceptions to the above statements are flagged or noted above or on the QC Narrative page.

*/! Flagged analyte recoveries deviated from the QA/QC limits.

EALID#: 175643

EAI ID#: 175643

Client: Exeter, Town of

Sample ID:	RFW-2	RFW-3	RFW-4	GZ-1L				
Lab Sample ID:	175643.01	175643.02	175643.03	175643.04				
Matrix:	aqueous	aqueous	aqueous	aqueous				
Date Sampled:	11/7/17	11/7/17	11/7/17	11/7/17		An	alysis	
Date Received:	11/7/17	11/7/17	11/7/17	11/7/17	Units	Date	Time	e Method Analyst
Chloride	59	37	170	120	mg/L	11/08/17	11:05	4500CIE-97 KD
Nitrate-N	< 0.5	< 0.5	< 0.5	< 0.5	mg/L	11/08/17	11:05	353.2 KD
TKN	< 0.5	< 0.5	1.3	< 0.5	mg/L	11/09/17	13:36	4500N _{org} C/N SEL

Sample ID:	GZ-2L	GZ-3L	GZ-104	GZ-201				
Lab Sample ID:	175643.05	175643.06	175643.07	175643.08				
Matrix:	aqueous	aqueous	aqueous	aqueous				
Date Sampled:	11/7/17	11/7/17	11/7/17	11/7/17		Ana	alysis	
Date Received:	11/7/17	11/7/17	11/7/17	11/7/17	Units	Date	Time	Method Analyst
Chloride	6	18	45	210	mg/L	11/08/17	11:26	4500CIE-97 KD
Nitrate-N	< 0.5	< 0.5	< 0.5	1.2	mg/L	11/08/17	11:26	353.2 KD
TKN	0.7	< 0.5	0.7	< 0.5	mg/L	11/09/17	13:46	4500N _{orq} C/N SEL

EAI ID#: 175643

Client: Exeter, Town of

Sample ID:

Chloride

Nitrate-N

TKN

Client Designation: Cross Road Landfill | Nov 2017

SW-13

48

1.2

< 0.5

Sample ID:	GZ-202A	P-9R	SW-17	P-2R (South Spring)				
Lab Sample ID:	175643.09	175643.1	175643.11	175643.12				
Matrix:	aqueous	aqueous	aqueous	aqueous				
Date Sampled:	11/7/17	11/7/17	11/7/17	11/7/17		Ar	nalysis	
Date Received:	11/7/17	11/7/17	11/7/17	11/7/17	Units	Date	•	e Method Analyst
Chloride	43	80	51	39	mg/L	11/08/17	11:32	4500CIE-97 KD
Nitrate-N	< 0.5	< 0.5	< 0.5	< 0.5	mg/L	11/08/17	11:32	353.2 KD
TKN	0.9	1.3	< 0.5	1.3	mg/L	11/09/17	13:56	4500N _{org} C/N SEL

Lab Sample ID: 175643.13 Matrix: aqueous Date Sampled: 11/7/17 **Analysis** Date Received: Units Date Time Method Analyst 11/7/17

mg/L

mg/L

mg/L

11/08/17 11:51 4500CIE-97 KD

11/09/17 14:18 $4500N_{orq}C/N$ SEL

11/08/17 11:51

353.2

EAI ID#: 175643

Client: Exeter, Town of

Client Designation: Cross Road Landfill | Nov 2017

				Date of			
Parameter Name	Blank	LCS	LCSD	Units Analysis	Limits	RPD	Method
Chloride	< 1	24 (97 %R)	25 (100 %R) (3 RPD)	mg/L 11/8/17	90 - 110	20	4500CIE-97
Nitrate-N	< 0.5	5.1 (101 %R)	5.0 (100 %R) (1 RPD)	mg/L 11/8/17	90 - 110	20	353.2
TKN	< 0.5	10 (101 %R)	10 (100 %R) (2 RPD)	mg/L 11/9/17	90 - 111	20	4500N _{ora} C/NH

Samples were analyzed within holding times unless noted on the sample results page.

Instrumentation was calibrated in accordance with the method requirements.

The method blanks were free of contamination at the reporting limits.

The associated matrix spikes and/or Laboratory Control Samples met the above stated criteria.

Exceptions to the above statements are flagged or noted above or on the QC Narrative page.

*/! Flagged analyte recoveries deviated from the QA/QC limits.

EAI ID#: 175643

Client: Exeter, Town of

Lab Sample ID: 175643.01 175643.02 175643.03 175643.07						.,-				
Matrix:	Sample ID:	RFW-2	RFW-3	RFW-4	GZ-104					
Date Sampled: 11/7/17	Lab Sample ID:	175643.01	175643.02	175643.03	175643.07					
Date Received: 11/7/17 11/7/17 11/7/17 11/7/17 11/7/17 Matrix Units Analysis Method Analyst	Matrix:	aqueous	aqueous	aqueous	aqueous	•				
Date Received:	Date Sampled:	11/7/17	11/7/17	11/7/17	11/7/17	Analytical		Date of		
Barium	Date Received:	11/7/17	11/7/17	11/7/17	11/7/17	-	Units	Analysis	Method	Analyst
Cadmium < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 AqDis mg/L 11/13/17 200.8 DS Chromium < 0.001	Arsenic	< 0.001	0.038	0.13	0.16	AqDis	mg/L	11/13/17	200.8	DS
Chromium	Barium	0.024	0.065	0.15	0.041	AqDis	mg/L	11/13/17	200.8	DS
Iron	Cadmium	< 0.001	< 0.001	< 0.001	< 0.001	AqDis	mg/L		200.8	DS
Lead	Chromium	< 0.001	< 0.001		< 0.001	•				
Manganese 0.72 2.4 5.2 3.7 AqDis mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Iron					-				
Mercury < 0.0001 < 0.0001 < 0.0001 < 0.0001 AqDis mg/L mg/L 11/13/17 200.8 DS DS Selenium < 0.001						-				
Selenium						-				
Sample ID: GZ-201 GZ-202A P-9R P-2R (South Spring) Lab Sample ID: 175643.08 175643.09 175643.1 175643.12 Matrix: aqueous aqueous aqueous aqueous Date Sampled: 11/7/17 11/7/17 11/7/17 11/7/17 Analytical Matrix Date of Analysis Method Analyst Arsenic 0.009 0.14 0.23 0.053 AqDis mg/L 11/13/17 200.8 DS Barium 0.23 0.069 0.82 0.49 AqDis mg/L 11/13/17 200.8 DS Cadmium <0.001	•					•				
Sample ID: GZ-201 GZ-202A P-9R P-2R (South Spring) Lab Sample ID: 175643.08 175643.09 175643.1 175643.12 Matrix: aqueous aqueous aqueous aqueous Date Sampled: 11/7/17 11/7/17 11/7/17 11/7/17 11/7/17 Date of Date of Date Received: 11/7/17 11/7/17 11/7/17 11/7/17 11/7/17 Date of Date Received: 11/7/17 11/7/17 11/7/17 11/7/17 Date of Date o						•	_			
Lab Sample ID: 175643.08 175643.09 175643.1 175643.12 Matrix: aqueous aqueous aqueous aqueous aqueous aqueous aqueous Date Sampled: 11/7/17 11/7/17 11/7/17 11/7/17 11/7/17 Matrix Units Analysis Method Analyst										
Matrix: aqueous aqueous aqueous aqueous Date Sampled: 11/7/17 11/7/17 11/7/17 11/7/17 Analytical Matrix Date of Matrix Date of Matrix Date of Matrix Method Analyst Arsenic 0.009 0.14 0.23 0.053 AqDis mg/L 11/13/17 200.8 DS Barium 0.23 0.069 0.082 0.49 AqDis mg/L 11/13/17 200.8 DS Cadmium < 0.001	Sample ID:	GZ-201	GZ-202A	P-9R	•					
Date Sampled: 11/7/17 11/7/17 11/7/17 11/7/17 Analytical Matrix Date of Units Date of Analysis Method Analyst Arsenic 0.009 0.14 0.23 0.053 AqDis mg/L 11/13/17 200.8 DS Barium 0.23 0.069 0.082 0.49 AqDis mg/L 11/13/17 200.8 DS Cadmium < 0.001	Lab Sample ID:	175643.08	175643.09	175643.1	175643.12					
Date Received: 11/7/17 11/7/17 11/7/17 11/7/17 Matrix Units Analysis Method Analyst Arsenic 0.009 0.14 0.23 0.053 AqDis mg/L 11/13/17 200.8 DS Barium 0.23 0.069 0.082 0.49 AqDis mg/L 11/13/17 200.8 DS Cadmium < 0.001	Matrix:	aqueous	aqueous	aqueous	aqueous					
Arsenic 0.009 0.14 0.23 0.053 AqDis mg/L 11/13/17 200.8 DS Barium 0.23 0.069 0.082 0.49 AqDis mg/L 11/13/17 200.8 DS Cadmium <0.001 <0.001 <0.001 <0.001 AqDis mg/L 11/13/17 200.8 DS Chromium 0.017 <0.001 0.002 0.008 AqDis mg/L 11/13/17 200.8 DS Iron 7.4 51 43 42 AqDis mg/L 11/13/17 200.8 DS Lead 0.010 <0.001 0.006 0.028 AqDis mg/L 11/13/17 200.8 DS Manganese 2.4 4.3 4.1 4.8 AqDis mg/L 11/13/17 200.8 DS Mercury <0.0001 <0.0001 <0.0001 0.0001 AqDis mg/L 11/13/17 200.8 DS Selenium 0.002 <0.001 <0.0001 AqDis mg/L 11/13/17 200.8 DS	Date Sampled:	11/7/17	11/7/17	11/7/17	11/7/17	Analytical				
Barium 0.23 0.069 0.082 0.49 AqDis mg/L 11/13/17 200.8 DS Cadmium < 0.001	Date Received:	11/7/17	11/7/17	11/7/17	11/7/17	Matrix	Units	Analysis	Method	Analyst
Cadmium < 0.001 < 0.001 < 0.001 < 0.001 AqDis mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Arsenic	0.009	0.14	0.23	0.053	AqDis	mg/L	11/13/17	200.8	DS
Chromium 0.017 < 0.001 0.002 0.008 AqDis mg/L 11/13/17 200.8 DS Iron 7.4 51 43 42 AqDis mg/L 11/13/17 200.8 DS Lead 0.010 < 0.001	Barium	0.23	0.069	0.082	0.49	AqDis	mg/L	11/13/17		
Iron 7.4 51 43 42 AqDis mg/L 11/13/17 200.8 DS Lead 0.010 < 0.001	Cadmium	< 0.001	< 0.001	< 0.001	< 0.001	AqDis	mg/L	11/13/17		
Lead 0.010 < 0.001 0.006 0.028 AqDis mg/L 11/13/17 200.8 DS Manganese 2.4 4.3 4.1 4.8 AqDis mg/L 11/13/17 200.8 DS Mercury < 0.0001	Chromium	0.017	< 0.001	0.002	0.008					
Manganese 2.4 4.3 4.1 4.8 AqDis mg/L nd/s mg/L n										
Mercury < 0.0001 < 0.0001 < 0.0001 < 0.0001 AqDis mg/L 11/13/17 200.8 DS Selenium 0.002 < 0.001										
Selenium 0.002 < 0.001 < 0.001 0.003 AqDis mg/L 11/13/17 200.8 DS	-									
	-									
Silver < 0.001 < 0.001 < 0.001 AqDis mg/L 11/13/17 200.8 DS										
	Silver	< 0.001	< 0.001	< 0.001	< 0.001	AqDis	mg/L	11/13/1/	200.8	טט

EAI ID#: 175643

Client: Exeter, Town of

Sample ID:	GZ-1L	GZ-2L	GZ-3L	SW-17					
Lab Sample ID:	175643.04	175643.05	175643.06	175643.11					
Matrix:	aqueous	aqueous	aqueous	aqueous					
Date Sampled:	11/7/17	11/7/17	11/7/17	11/7/17	Analytical		Date of		
Date Received:	11/7/17	11/7/17	11/7/17	11/7/17	Matrix	Units	Analysis	Method	Analyst
Arsenic	0.003	0.004	0.007	0.004	AqTot	mg/L	11/13/17	200.8	DS
Barium	0.028	0.064	0.055	0.022	AqTot	mg/L	11/13/17	200.8	DS
Cadmium	< 0.001	< 0.001	< 0.001	< 0.001	AqTot	mg/L	11/13/17	200.8	DS
Chromium	0.003	< 0.001	0.017	< 0.001	AqTot	mg/L	11/13/17	200.8	DS
Iron	0.95	0.42	9.4	0.24	AqTot	mg/L	11/13/17	200.8	DS
Lead	0.001	< 0.001	0.006	< 0.001	AqTot	mg/L	11/13/17	200.8	DS
Manganese	0.22	15	0.28	2.2	AqTot	mg/L	11/13/17	200.8	DS
Mercury	< 0.0001	< 0.0001	0.0002	< 0.0001	AqTot	mg/L	11/13/17	200.8	DS
Selenium	< 0.001	< 0.001	< 0.001	< 0.001	AqTot	mg/L	11/13/17	200.8	DS
Silver	< 0.001	< 0.001	< 0.001	< 0.001	AqTot	mg/L	11/13/17	200.8	DS

Committe ID:	0144.40
Sample ID:	SW-13

Lab Sample ID:	175643.13					
Matrix:	aqueous					
Date Sampled:	11/7/17	Analytical		Date of		
Date Received:	11/7/17	Matrix	Units	Analysis	Method	Analys
Arsenic	0.027	AgTot	mg/L	11/13/17	200.8	D:
Barium	0.033	AqTot	mg/L	11/13/17	200.8	DS
Cadmium	< 0.001	AqTot	mg/L	11/13/17	200.8	DS
Chromium	< 0.001	AqTot	mg/L	11/13/17	200.8	DS
Iron	5.6	AqTot	mg/L	11/13/17	200.8	DS
Lead	< 0.001	AqTot	mg/L	11/13/17	200.8	DS
Manganese	2.9	AqTot	mg/L	11/13/17	200.8	DS
Mercury	< 0.0001	AqTot	mg/L	11/13/17	200.8	DS
Selenium	< 0.001	AqTot	mg/L	11/13/17	200.8	DS
Silver	< 0.001	AqTot	mg/L	11/13/17	200.8	DS

EAI ID#: 175643

Client: Exeter, Town of

Client Designation: Cross Road Landfill | Nov 2017

				Date of			
Parameter Name	Blank	LCS	LCSD	Units Analysis	Limits R	RPD	Method
Arsenic	< 0.001	1.0 (102 %R)	NA.	mg/L 11/13/17	85 - 115	20	200.8
Barium	< 0.001	1.1 (112 %R)	N/A	mg/L 11/13/17	85 - 115	20	200.8
Cadmium	< 0.001	0.99 (99 %Ř)	NA.	mg/L 11/13/17	85 - 115	20	200.8
Chromium	< 0.001	1.0 (101 %R)	N/	mg/L 11/13/17	85 - 115	20	200.8
Iron	< 0.05	11 (98 %Ř)	N/	mg/L 11/13/17	85 - 115	20	200.8
Lead	< 0.001	0.93 (93 %R)	N/	mg/L 11/13/17	85 - 115	20	200.8
Manganese	< 0.005	1.0 (102 %R)	N/	mg/L 11/13/17	85 - 115	20	200.8
Mercury	< 0.0001	0.0010 (104 %R)	N/	mg/L 11/13/17	85 - 115	20	200.8
Selenium	< 0.001	0.95 (95 %R)	N/	mg/L 11/13/17	85 - 115	20	200.8
Silver	< 0.001	0.11 (110 %R)	N/	A mg/L 11/13/17	85 - 115	20	200.8

Samples were analyzed within holding times unless noted on the sample results page.

Instrumentation was calibrated in accordance with the method requirements.

The method blanks were free of contamination at the reporting limits.

The associated matrix spikes and/or Laboratory Control Samples met the above stated criteria.

Exceptions to the above statements are flagged or noted above or on the QC Narrative page.

*/! Flagged analyte recoveries deviated from the QA/QC limits.

Date/Time

Eastern Analytical, Inc.

CHAIN-OF-CUSTODY RECORD

175643

EXENH

Sample IDs	Composites need start and stop dates/times	Matrix	Parameters and Sample Notes			# of containers
RFW-2	11/7/17	aqueous	AqTot/CI/NO3/TKN/VNH8260CFullList/V8260SIM14DIO AqDis/ICPMets.As.Fe.Mn.Ba.Cd.Cr.Pb.Se.Ag.Hg	XANE		7
	1450	Gráb) or Comp			Dissolved Sample	e Field Filtered 🔀
L≱ Sampler confire	ns ID and parameters	are accurate	Circle preservative/s.(HCD HNO) H2SO NaOH MEOH Na	a ₂ S ₂ O ₃ ICE		
RFW-3	11/7/17	aqueous	AqTot/CI/NO3/TKN/VNH8260CFullList/V8260SIM14DIO AqDis/ICPMets.As.Fe.Mn.Ba.Cd.Cr.Pb.Se.Ag.Hg	XANE		7
ونوسيه	1150				Discalused Comple	o Field Filtered Fil
Sampler confirm	ns ID and parameters	are accurate	Circle preservative/s: (HCI) (HNO ₃ (H ₂ SO) NaOH MEOH Na	a ₂ S ₂ O ₃ ICE	Dissolved Sample	e Field Filtered 🔀
RFW-4	11/7/17	agueous Grab or Comp	AqTot/Cl/NO3/TKN/VNH8260CFullList/V8260SIM14DIO AqDis/ICPMets.As.Fe.Mn.Ba.Cd.Cr.Pb.Se.Ag.Hg	XANE		7
Sampler confirm	l ns ID and parameters	l are accurate	Circle preservative/s: ACL AND H,SO NaOH MEOH N	a ₂ S ₂ O ₃ ICE	Dissolved Sample	e Field Filtered 🔀
GZ-1L	11/1/17	aqueous Grap or Comp	AqTot/Cl/NO3/TKN/ICPMets.As.Fe.Mn.Ba.Cd.Cr.Pb.Se.	Ag.Hg/VNH8260CFullList/V826	OSIM14DIOXANE	7
Sampler confirm	l ns ID and parameters	l s are accurate	Circle preservative/s/HQL/HNQ./H,SQ, NaOH_MEOH_N	a ₂ S ₂ O ₃ ICE	Dissolved Sample	e Field Filtered
Please ei	nsure this auto CO	C is accurate,	adheres to permit or sampling requirements for t	this sampling event, and m	nodify as necessa	ary.
EAI Project ID 31			Results Needed by: Preferred date	ReportingOptions		
Project Name Cro	ss Road Landfill No	v 2017	Notes:	☐ HC ☑ EDD PDF	☐ NO FAX ☐ Partial FAX	PO# 4335-309 Quote#: 1013778
State NH Client (Pro Mgr) Je	nnifer Mates		Attn sampler: Auto chain of custody provided for your convenience, please review for accuracy	☑ EDD email ☑ PDF prelim, NO FAX	☑ PDF Invoice ☐ EQUIS	Temp 2.0°C
Customer Ex	eter, Town of		and write in any needed changes	e-mail Login Confirmation	•	_ Ice Y≭N□
	wn Office, 13 Newfie	lds Rd.	, and the second	Samples Collected by:	ANDRRW T	TARANT,
	eter NH 03833-2792			Char h	11/7/17 1640	They muton
Phone 778-0591	Fax 772-4		QC deliverables	Relinquished by	Date/Time <i>1-17 17:55</i>	Received by
Email: jmates@exe	ternh.gov		□A □A+ 図B □B+ □C □PC	Relinquished by	Date/Time	Received by

www.easternanalytical.com | 800.287.0525 | customerservice@easternanalytical.com

CHAIN-OF-CUSTODY RECORD

175643

	Date/Time Composites need start				
Sample IDs	and stop dates/times	Matrix	Parameters and Sample Notes	# of co	ontainers
GZ-2L	11/7/17	aqueous	AqTot/CI/NO3/TKN/ICPMets.As.Fe.Mn.Ba.Cd.Cr.Pb.Se.A		7
	1428	Grab or Comp	* TOTAL METALS	3/4 FULL DUE TO LOW	
Sampler confirm	│	l s are accurate	Circle preservative/s/HCL)HNO H2SO NaOH MEOH Na2	YIELD S. I. IS I STITE	red
GZ-3L	11/7/17	aqueous	AqTot/Cl/NO3/TKN/ICPMets.As.Fe.Mn.Ba.Cd.Cr.Pb.Se.A		7
	1418	Grab or Comp			<u></u>
Sampler confirm	s ID and parameters	are accurate	Circle preservative/s: ACD HNO (H,SO) NaOH MEOH Na,	S ₂ O ₃ ICE Dissolved Sample Field Filter	red
GZ-104	11/7/17	aqueous Gran or Comp	AqTot/CI/NO3/TKN/VNH8260CFullList/V8260SIM14DIOX AqDis/ICPMets.As.Fe.Mn.Ba.Cd.Cr.Pb.Se.Ag.Hg	ANE	7
Sampler confirm		are accurate	Circle preservative/s: (HCL MNO, H-SO) NaOH MEOH Na ₂	S ₂ O ₃ ICE Dissolved Sample Field Filter	red 📉
GZ-201	11/7/17	aqueous Grab or Comp	AqTot/CI/NO3/TKN/VNH8260CFullList/V8260SIM14DIOX AqDis/ICPMets.As.Fe.Mn.Ba.Cd.Cr.Pb.Se.Ag.Hg	ANE	7
Sampler confirm	ns ID and parameters	are accurate	Circle preservative/s:(HCL)HNO,)(H,SO) NaOH MEOH Na ₂	S ₂ O ₃ ICE Dissolved Sample Field Filte	red 🔀
Please en	sure this auto CO	C is accurate,	adheres to permit or sampling requirements for th Results Needed by: Preferred date	nis sampling event, and modify as necessary. ReportingOptions	
Project Name Cros	ss Road Landfill No	v 2017	Notes:	☐ HC ☐ NO FAX PO#	4335-309
			Attn sampler: Auto chain of custody provided	EDD PDF	o°c ind
Phone 778-0591	Fax 772-4	709	QC deliverables	fra Brules 11.7.17 17.55 C/m	DV.
Email: jmates@exet	ernh.gov		□A □A+ 図B □B+ □C □PC	Relinquished by Date/Time Received	ſ by
Direct	Easte	ern Analytical,	Inc. www.easternanalytical.com 800.287.0	0525 customerservice@easternanalytical.com	

CHAIN-OF-CUSTODY RECORD

1756 43

EXENH

	Date/Time Composites need start			
Sample IDs	and stop dates/times	Matrix	Parameters and Sample Notes	# of containers
GZ-202A	11/7/17	aqueous Grab or Comp	AqTot/CI/NO3/TKN/VNH8260CFullList/V8260SIM14DIO AqDis/ICPMets.As.Fe.Mn.Ba.Cd.Cr.Pb.Se.Ag.Hg	XANE 7
Sampler confirm	ns ID and parameters	are accurate	Circle preservative/s: ACV (NO3 (A,SO) NaOH MEOH N	a ₂ S ₂ O ₃ ICE Dissolved Sample Field Filtered
P-9R	11/7/17	aqueous Grab or Comp	AqTot/CI/NO3/TKN/VNH8260CFullList/V8260SIM14DIO AqDis/ICPMets.As.Fe.Mn.Ba.Cd.Cr.Pb.Se.Ag.Hg	XANE
Sampler confirm	ns ID and parameters	s are accurate	Circle preservative/s/HCV/HNO/(H,SQ) NaOH MEOH N	Dissolved Sample Field Filtered
SW-17	11/7/17	aqueous	AqTot/CI/NO3/TKN/ICPMets.As.Fe.Mn.Ba.Cd.Cr.Pb.Se.	
Sampler confirm	1501 ns ID and parameters		Circle preservative/s:(HCL)(HNO)(H,SO) NaOH MEOH N	Dissolved Sample Field Filtered
P-2R (South Spring)	11/7/17	aqueous Grabor Comp	AqTot/CI/NO3/TKN/VNH8260CFullList/V8260SIM14DIO AqDis/ICPMets.As.Fe.Mn.Ba.Cd.Cr.Pb.Se.Ag.Hg	
Sampler confirm	ns ID and parameters	s are accurate	Circle preservative/s HCIXHNO H,SO NaOH MEOH N	a ₂ S ₂ O ₃ ICE Dissolved Sample Field Filtered
Please en	sure this auto CO	C is accurate,	adheres to permit or sampling requirements for a	this sampling event, and modify as necessary. ReportingOptions
Project Name Cros	ss Road Landfill No	ov 2017	Results Needed by: Preferred date Notes:	☐ HC ☐ NO FAX PO# 4335-309 ☐ EDD PDF ☐ Partial FAX Quote#: 1013778
			Attn sampler: Auto chain of custody provided for your convenience, please review for accuracy and write in any needed changes	EDD email PDF Invoice PDF prelim, NO FAX EQUIS PDF prelim, NO FAX PDF
Phone 778-0591 Email: jmates@exet	Fax 772-4 ternh.gov	4709	QC deliverables	Relinquished by Date/Time Received by
Direct		ern Analytical,		.0525 customerservice@easternanalytical.com

Date/Time

Eastern Analytical, Inc.

CHAIN-OF-CUSTODY RECORD

175643 g

	Composites need start					
Sample IDs	and stop dates/times	Matrix	Parameters and Sample Notes			# of containers
SW-13	11/7/17	aqueous	AqTot/Cl/NO3/TKN/ICPMets.As.Fe.Mn.Ba.Cd.Cr.Pb.Se	.Ag.Hg/VNH8260CFullList/V826	30SIM14DIOXANE	7
	1220	Grab or Comp				المستنسسا
Sampler conf	irms ID and parameters	are accurate	Circle preservative/s: (CD (NO) (LSO) NaOH MEOH N	a ₂ S ₂ O ₃ ICE	Dissolved Samp	ole Field Filtered
GMW-11	N/A	aqueous Grab or Comp	AqTot/CI/NO3/TKN/VNH8260CFullList/V8260SIM14DIC AqDis/ICPMets.As.Fe.Mn.Ba.Cd.Cr.Pb.Se.Ag.Hg	NO YIELD		X
Sampler conf	। irms ID and parameters	are accurate	Circle preservative/s: HCL HNO ₃ H ₂ SO ₄ NaOH MEOH N	a ₂ S ₂ O ₃ ICE	Dissolved Samp	ole Field Filtered
Trip Blank - 8260	11441		AqTot/VNH8260CFullList			
	9/22/17	aqueous				ब
	16:15	Grap or Comp				
Sampler conf	I <i>EAT</i> irms ID and parameters	l aro accurato	Circle preservative (s. C.) LINO, LL CO. N. CU. MECU. N.	. 0.0. 105	Dissolved Samp	ole Field Filtered
	Iniis iD and parameters	l	Circle preservative/s: ACD HNO ₃ H ₂ SO ₄ NaOH MEOH N	a ₂ S ₂ O ₃ IGE	·	
Trip Blank - 1,4 Dioxane	11/-1/1-1	aqueous	AqTot/V8260SIM14DIOXANE			3
Бюхано	9/18/17	Grab or Comp				_ \\\
rsh	8:00 Lat				Discolused Ossess	de Ciela Citere d E
LA Sampler conf	irms ID and parameters	are accurate	Circle preservative/s: HCL HNO ₃ H ₂ SO ₄ NaOH MEOH N	a ₂ S ₂ O ₃ ICE	Dissolved Samp	ole Field Filtered
Please	ensure this auto CO	C is accurate,	adheres to permit or sampling requirements for a	this sampling event, and m	nodify as necess	sary.
EAI Project ID 31	I		Results Needed by: Preferred date	ReportingOptions		
Project Name C	ross Road Landfill No	v 2017	Notes:	□ HC	☐ NO FAX	PO# 4335-309
				⊠ EDD PDF	☐ Partial FAX	Quote#: 1013778
State N	H		Attn sampler: Auto chain of custody provided	⊠ EDD email	PDF Invoice	Quoten. 1010770
Client (Pro Mgr)	Jennifer Mates		for your convenience, please review for accuracy	PDF prelim, NO FAX	☐ EQUIS	Temp ZO°C
Customer E	Exeter, Town of		and write in any needed changes	e-mail Login Confirmation	٨	lce Y Ø N□
Address	Γown Office, 13 Newfiel	lds Rd.	,	Samples Collected by:	HNDREW TAR	ANI
	Exeter NH 03833-2792			Combo This 11/	17/17 1640 7	hos Bulon
			·	Relinquished by	Date/Time	Received by
Phone 778-0591	Fax 772-4	7 บช	QC deliverables	Han Bruton 11-7.	17 17:55	Tin M
Email: jmates@ex	ceternh.gov		□A □A+ 図B □B+ □C □PC	Relinquished by	Date/Time	Received by
Direct				<u>-</u>	•	-

www.easternanalytical.com | 800.287.0525 | customerservice@easternanalytical.com

Summary Letter Report

Proactive by Design

GEOTECHNICAL

ENVIRONMENTAL

ECOLOGICAL

WATER

CONSTRUCTION MANAGEMENT

5 Commerce Park North Suite 201 Bedford, NH 03110 T: 603.623.3600 F: 603.624.9463 www.gza.com

Via Email

January 31, 2018 File No. 04.0021270.28

Ms. Jennifer Mates, Town Engineer Town of Exeter Exeter Public Works Department 10 Front Street Exeter, New Hampshire 03883

Re: Summary Letter Report
Evaluation of Discharge to Exeter River
Cross Road Landfill
Exeter, New Hampshire (Site)
DES Site No. 198401081, Project No. 978

Dear Ms. Mates:

GZA GeoEnvironmental, Inc. (GZA) is pleased to provide the Town of Exeter (Town) this letter report summarizing results of the recent metals discharge evaluation associated with a groundwater seep downgradient of the Cross Road Landfill (Landfill). The objective of the evaluation was to calculate estimates of the mass of iron, manganese, and arsenic discharged to the Exeter River from the seep during 2017. Metals concentration and flow rate data at the confluence of the stream emanating from the seep and the Exeter River were used to calculate estimates of mass. The purpose of the work was to provide information needed to preliminarily understand the potential for impacts to water quality within the Exeter River, including at the Town's water supply intake, approximately 4 miles downstream from the seep.

The remainder of this letter report provides a summary of background information, the work performed, results, and GZA's conclusions and recommendations. GZA's services and this letter report are subject to the attached limitations.

BACKGROUND

Results of previously completed hydrogeologic Site investigations associated with the Landfill indicate that groundwater impacted by the Landfill potentially discharges from the groundwater seep. On August 10, 2016, GZA personnel visited the area surrounding the groundwater seep SW-14 (refer to attached **Figure**) to evaluate the condition of the riverbed of the Exeter River relative to the potential for the collection of pore water samples. During the Site visit, GZA observed groundwater seepage converging into a single small stream that discharged to the Exeter River; orange staining (likely due to the presence of iron) in the seepage area, as well as in areas of

the Exeter River downstream of the discharge; and a riverbed consisting mostly of gravel, cobbles, and boulders. Note that the Exeter River is a public water supply of the Town.

Based on these observations and the results of previous investigations indicating the presence of certain metals in the groundwater discharged from the seep at concentrations exceeding anticipated background concentrations, GZA recommended the construction of a temporary V-notch weir (weir) and collection of water quality samples to measure flow and metals concentrations within the unnamed stream immediately prior to the confluence with the Exeter River. Tasks were proposed in a Work Plan submitted to the New Hampshire Department of Environmental Services (NHDES) on March 28, 2017. GZA obtained verbal authorization of the Work Plan from Mr. Peter Beblowski on April 19, 2017. Activities completed to implement the Work Plan are described below.

WEIR CONSTRUCTION

GZA installed a temporary weir on May 25, 2017 in the approximately 2-foot-wide stream channel downgradient of the groundwater seepage in the area of SW-14 (refer to the attached **Figure**). The weir was constructed of plywood with a 90° V-notch, which was seated into the streambed and held in place with two metal fence posts. Once the plywood was in place, 6-millimeter polyethylene sheeting was attached to the top and bottom of the plywood. The polyethylene sheeting was also placed along the bottom of the streambed upstream of the weir extending over the stream banks and held in place by sandbags. The purpose of the polyethylene sheeting was to prevent water from flowing around or under the weir. The weir and associated materials were removed after the last samples were collected on December 8, 2017. A photo of the weir after installation and a photo of the area after weir removal are attached.

WEIR MONITORING AND ANALYTICAL DATA COLLECTION

Streamflow measurements and water quality samples were collected by GZA personnel on an approximately monthly frequency, to include potential seasonal variations in streamflow and metals concentrations within the estimate of mass discharged to the Exeter River. Monthly monitoring was initiated during June and was concluded during December 2017 and included seven monitoring rounds. For each monitoring event, GZA measured the height of the water in the notch at the weir for use in flow rate calculations. Water samples were collected from the weir for analysis of total and dissolved iron, manganese, and arsenic. The samples were submitted to ESS Laboratory in Cranston, Rhode Island, for analytical laboratory analysis under standard chain-of-custody protocol. Each of the samples were collected in accordance with the requirements of Env-Or 610.02 (e) (Sampling and Analysis). The dissolved metals samples were field-filtered using a 0.45-micron disposable groundwater filter. Sampling and monitoring results, calculated flow rates, and estimates of mass loading to the river are summarized in **Table 1**.

RESULTS

Dissolved and total iron, arsenic, and manganese were detected above the analytical laboratory reporting limits in the majority the samples. Total arsenic concentrations ranged from less than 5.0 micrograms per liter (μ g/L; June sampling event) to 36.2 μ g/L (August). Total iron concentrations ranged from 375 μ g/L (October) to 5,410 μ g/L (August) and total manganese concentrations ranged from 1,230 μ g/L (December) to 1,900 μ g/L

¹ Work Plan – Evaluation of Discharge to Exeter River, Cross Road Landfill, prepared by GZA dated March 28, 2017.

(August). While fairly constant, the calculated volumetric flow rate of water through the weir was 36 to 52 gallons per minute (gpm). Based on the constituent concentration and measured height of the water at the weir, a mass flow rate of each constituent discharged to the Exeter River was calculated. The average calculated discharge flow rates were 0.58 pounds per day (lbs/day), 0.0050 lbs/day, and 0.69 lbs/day for iron, arsenic, and manganese, respectively. The data showed variability likely due to seasonal effects whereby detected concentrations in August were the highest for all compounds. The table below shows the range of calculated discharge flow rates.

Exhibit 1: Range of Calculated Mass Flowrates

	Mini	mum	Maximum		
Constituent	Discharge Flow Rate	Month Flow Rate was	Discharge Flow Rate	Month Flow Rate was	
	(lbs/day)	Measured	(lbs/day)	Measured	
Iron	0.11	December	2.33	August	
Arsenic	0.0018	December	0.016	August	
Manganese	0.60	November	0.82	August	

DISCUSSION/CONCLUSION

To preliminarily evaluate potential effects on surface water quality within the Exeter River at the confluence with the seep, daily mean discharge data for the Exeter River obtained from the US Geological Survey website station number 01073587,² for Haigh Road (located approximately 3 miles upstream). Estimates of the theoretical concentrations of iron, manganese, and arsenic within the surface water of the Exeter River were calculated and compared to the Water Quality for Toxic Substances (WQTS) surface water standards for human protection due to water and fish ingestion listed in the New Hampshire Code of Administrative Rules Chapter Env-Wq 1700 (see **Table 1**). The average theoretical concentrations for iron, arsenic, and manganese are 0.01 milligrams per liter (mg/L; 0.3 mg/L), 7.0x10⁻⁵ mg/L (1.8x10⁻⁵ mg/L), and 0.0073 mg/L (0.05 mg/L), respectively (the WQTS is shown for each constituent parenthetically). The results indicate that the average contributions of iron, arsenic, and manganese are 3.3%, 389%, and 15%, respectively.

The comparison to WQTS based on stream flow from the Haigh Road gauging station is conservative given the discharge of groundwater to the river over the reach between the gauging station and the confluence with the seep discharge. Surface water sampling completed by GZA between 2002 and 2007 did not detect arsenic in samples collected from the Exeter River, both upstream and downstream of the confluence with the seep discharge above the laboratory reporting limits (RL; 0.005 to 0.01 mg/L). The absence of arsenic at concentrations above the RL is consistent with the use of the Haigh Road gauging station as being conservative, and further suggests that effects on surface water quality are limited. The historical surface water samples were not analyzed for iron or manganese.

Based on the results of the work summarized herein, GZA recommends further evaluation of the potential effects of the seep discharge on surface water quality within the Exeter River including: stream gauging of the Exeter River at the location of the seep discharge during spring and late summer; sampling of surface water in the Exeter River immediately up and downstream of the confluence with the seep concurrent with the stream gauging; and comparison of the results to flow and water quality data at the Town's water supply intake. The recommended work considers the results of the work described herein and presence of the Town's water supply downstream of the confluence of the seep discharge with the Exeter River. A scope for the additional monitoring will be

 $^{^2} https://waterdata.usgs.gov/nwis/dv?cb_00060=on\&format=html\&site_no=01073587\&referred_module=sw\&period=\&begin_date=2017-01-18\&end_date=2018-01-18$

January 31, 2018 04.0021270.28 Town of Exeter, New Hampshire Page | 4

developed and submitted for NHDES approval. Implementation will coincide with the Town's annual budget process.

GZA greatly appreciates the opportunity to provide the Town of Exeter with environmental investigation services on this project. We would be pleased to meet with you to discuss our conclusions and recommendations and answer any questions you may have. Please do not hesitate to contact the undersigned at 603-232-8740.

Very truly yours,

GZA GEOENVIRONMENTAL, INC.

Danna M Trut

Dawna M. Tousignant, P.E.

Project Manager

James M. Wieck, P.G. Consultant/Reviewer

Associate Principal

DMT/JDR/JMW:kr

Attachments: Figure

Table
Photo Log
Lab Data
Limitations

Figure

Table

TABLE 1 -WATER QUALITY DATA SUMMARY

Cross Road Landfill Exeter, New Hampshire DES Site No. 198401081, Project No. 978

	Water Height (in)	Stream Flow Rate	River Flow Rate (gpm) ⁴		on g/L)		ding Rate 'day)	Concentration in River Due to Discharge (mg/L) WQTS: 0.3 mg/L	Percentage of Surface Water Standard Due to Discharge
Date	Upstream	(gpm)		Total	Dissolved	Total	Dissolved	(Total)	(%)
6/7/2017	3.0	36	105,482	743	641	0.32	0.28	2.5E-04	0.08%
7/3/2017	3.0	36	21,007	747	643	0.32	0.28	1.3E-03	0.42%
8/7/2017	3.0	36	3,586	5,410	1,120	2.33	0.48	5.4E-02	18%
9/5/2017	3.0	36	7,361	1,080	933	0.46	0.40	5.3E-03	1.8%
10/2/2017	3.0	36	3,169	780	843	0.34	0.36	8.8E-03	2.9%
11/6/2017	3.0	36	34,787	375	<100	0.16	-	3.9E-04	0.13%
12/8/2017	3.5	52	30,343	180	325	0.11	0.20	3.1E-04	0.10%
							average	1.0E-02	3.3%

	Water Height (in)	Stream Flow Rate	River Flow Rate		enic g/L)		ading Rate day)	Concentration in River Due to Discharge (mg/L) WQTS: 1.8E-5 mg/L	Percentage of Surface Water Standard Due to Discharge
Date	Upstream	(gpm)		Total	Dissolved	Total	Dissolved	Total	(%)
6/7/2017	3.0	36	105,482	<5.0	5.3	-	0.0023	1.8E-06	10%
7/3/2017	3.0	36	21,007	10.7	9.3	0.0046	0.0040	1.8E-05	101%
8/7/2017	3.0	36	3,586	36.2	15.7	0.016	0.0068	3.6E-04	2009%
9/5/2017	3.0	36	7,361	8.6	7.0	0.0037	0.0030	4.2E-05	233%
10/2/2017	3.0	36	3,169	5.1	5.9	0.0022	0.0025	5.8E-05	320%
11/6/2017	3.0	36	34,787	4.4	<5.0	0.0019	-	4.5E-06	25%
12/8/2017	3.5	52	30,343	2.8	<5.0	0.0018	-	4.8E-06	27%
							average	7.0E-05	389%

	Water Height (in)	Stream Flow Rate	River Flow Rate (gpm) ⁴	_	ganese g/L)	_	Loading Rate 'day)	Concentration in River Due to Discharge (mg/L) WQTS: 0.05 mg/L	Percentage of Surface Water Standard Due to Discharge
Date	Upstream	(gpm)		Total	Dissolved	Total	Dissolved	Total	(%)
6/7/2017	3.0	36	105,482	1,280	1,420	0.55	0.61	4.3E-04	0.87%
7/3/2017	3.0	36	21,007	1,500	1,530	0.65	0.66	2.6E-03	5.1%
8/7/2017	3.0	36	3,586	1,900	1,750	0.82	0.75	1.9E-02	38%
9/5/2017	3.0	36	7,361	1,740	1,940	0.75	0.83	8.5E-03	17%
10/2/2017	3.0	36	3,169	1,540	1,840	0.66	0.79	1.7E-02	35%
11/6/2017	3.0	36	34,787	1,400	1,210	0.60	0.52	1.4E-03	2.9%
12/8/2017	3.5	52	30,343	1,230	1,360	0.77	0.86	2.1E-03	4.2%
<u> </u>							average	7.3E-03	15%

 $Abbreviations: gpm - gallons \ per \ minute; \ \mu g/L - micrograms \ per \ liter; \ lb/day - pounds \ per \ day; \ mg/L - milligrams \ per \ liter.$

Notes

- 1. Bold Indicates concentration was detected above the laboratory reporting limit (RL)
- 2. < Indicates constituent was not detected above the RL
- 3. Indicates values could not be calculated from the lab data
- 4. River Flow Rate is the Daily Mean Discharge of the Exeter River at Haigh Road obtained from the US Geological Survey website station number 01073587, https://waterdata.usgs.gov/nwis/dv?cb_00060=on&format=html&site_no=01073587&referred_module=sw&period=&begin_date=2017-01-18&end_date=2018-01-18
- 5. Concentration in River Due to Discharge is the concentration of the metal in the River assuming the discharge from the weir is diluted by the River and the River does not contain the metal prior to the weir discharge point. In general, total metals concentrations were used unless the total concentration was below the laboratory detection limit, in which case the dissolved concentration was used (arsenic, 6/7/17)
- 6. The percentage of Surface Water Standard Due to Discharge is equal to the concentration due to the discharge from the weir divided by the surface water standard for Human Protection due to Water & Fish Ingestion listed in the New Hampshire Code of Administrative Rules Chapter Env-Wq 1700.

Photo Log

GZA GeoEnvironmental, Inc.

PHOTOGRAPHIC LOG

Client Name:

Town of Exeter Public Works

Site Location:

Cross Road Landfill, Exeter, New Hampshire

Project No.:

04.0021270.28

Photo No.: Date: 5/25/17

Description:

Photo of weir after installation.

Photo No.: Date: 12/8/17

Description:

Photo of weir area after weir removal.

Lab Data

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Christopher Melby GZA GeoEnvironmental, Inc. 5 Commerce Park North Bedford, NH 03110

RE: Cross Road Landfill (04.0021270.28)

ESS Laboratory Work Order Number: 1706216

This signed Certificate of Analysis is our approved release of your analytical results. These results are only representative of sample aliquots received at the laboratory. ESS Laboratory expects its clients to follow all regulatory sampling guidelines. Beginning with this page, the entire report has been paginated. This report should not be copied except in full without the approval of the laboratory. Samples will be disposed of thirty days after the final report has been delivered. If you have any questions or concerns, please feel free to call our Customer Service Department.

Laurel Stoddard

Laboratory Director

REVIEWED

By ESS Laboratory at 5:11 pm, Jun 15, 2017

Analytical Summary

The project as described above has been analyzed in accordance with the ESS Quality Assurance Plan. This plan utilizes the following methodologies: US EPA SW-846, US EPA Methods for Chemical Analysis of Water and Wastes per 40 CFR Part 136, APHA Standard Methods for the Examination of Water and Wastewater, American Society for Testing and Materials (ASTM), and other recognized methodologies. The analyses with these noted observations are in conformance to the Quality Assurance Plan. In chromatographic analysis, manual integration is frequently used instead of automated integration because it produces more accurate results.

The test results present in this report are in compliance with TNI and relative state standards, and/or client Quality Assurance Project Plans (QAPP). The laboratory has reviewed the following: Sample Preservations, Hold Times, Initial Calibrations, Continuing Calibrations, Method Blanks, Blank Spikes, Blank Spike Duplicates, Duplicates, Matrix Spikes, Matrix Spike Duplicates, Surrogates and Internal Standards. Any results which were found to be outside of the recommended ranges stated in our SOPs will be noted in the Project Narrative.

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Cross Road Landfill

ESS Laboratory Work Order: 1706216

SAMPLE RECEIPT

The following samples were received on June 08, 2017 for the analyses specified on the enclosed Chain of Custody Record.

Lab Number 1706216-01

Sample Name Weir - 01 Matrix Surface Water **Analysis** 6010C, 7010

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Cross Road Landfill

ESS Laboratory Work Order: 1706216

PROJECT NARRATIVE

No unusual observations noted.

End of Project Narrative.

DATA USABILITY LINKS

To ensure you are viewing the most current version of the documents below, please clear your internet cookies for www.ESSLaboratory.com. Consult your IT Support personnel for information on how to clear your internet cookies.

Definitions of Quality Control Parameters

Semivolatile Organics Internal Standard Information

Semivolatile Organics Surrogate Information

Volatile Organics Internal Standard Information

Volatile Organics Surrogate Information

EPH and VPH Alkane Lists

The Microbiology Division of Thielsch Engineering, Inc.

ESS Laboratory Work Order: 1706216

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Cross Road Landfill

CURRENT SW-846 METHODOLOGY VERSIONS

Analytical Methods

1010A - Flashpoint 6010C - ICP

6020A - ICP MS 7010 - Graphite Furnace

7196A - Hexavalent Chromium

7470A - Aqueous Mercury 7471B - Solid Mercury

8011 - EDB/DBCP/TCP

8015C - GRO/DRO

8081B - Pesticides 8082A - PCB

8100M - TPH

8151A - Herbicides

8260B - VOA

8270D - SVOA

8270D SIM - SVOA Low Level

9014 - Cyanide

9038 - Sulfate

9040C - Aqueous pH

9045D - Solid pH (Corrosivity)

9050A - Specific Conductance

9056A - Anions (IC)

9060A - TOC

9095B - Paint Filter

MADEP 04-1.1 - EPH / VPH

Prep Methods

3005A - Aqueous ICP Digestion

3020A - Aqueous Graphite Furnace / ICP MS Digestion

3050B - Solid ICP / Graphite Furnace / ICP MS Digestion

3060A - Solid Hexavalent Chromium Digestion

3510C - Separatory Funnel Extraction

3520C - Liquid / Liquid Extraction

3540C - Manual Soxhlet Extraction

3541 - Automated Soxhlet Extraction

3546 - Microwave Extraction

3580A - Waste Dilution

5030B - Aqueous Purge and Trap

5030C - Aqueous Purge and Trap

5035 - Solid Purge and Trap

SW846 Reactivity Methods 7.3.3.2 (Reactive Cyanide) and 7.3.4.1 (Reactive Sulfide) have been withdrawn by EPA. These methods are reported per client request and are not NELAP accredited.

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Cross Road Landfill

Client Sample ID: Weir - 01 Date Sampled: 06/07/17 08:05

Percent Solids: N/A

ESS Laboratory Work Order: 1706216 ESS Laboratory Sample ID: 1706216-01

Sample Matrix: Surface Water

Units: ug/L

Extraction Method: 200.7/6010BNoDigest

Dissolved Metals

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyst	Analyzed	<u>I/V</u>	F/V	Batch
Arsenic	5.3 (5.0)		7010		1	KJK	06/14/17 19:31	10	10	CF70837
Iron	641 (100)		6010C		1	KJK	06/09/17 19:52	10	10	CF70837
Manganese	1420 (20.0)		6010C		1	KJK	06/09/17 19:52	10	10	CF70837

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Cross Road Landfill

Client Sample ID: Weir - 01 Date Sampled: 06/07/17 08:05

Percent Solids: N/A

ESS Laboratory Work Order: 1706216 ESS Laboratory Sample ID: 1706216-01

Sample Matrix: Surface Water

Units: ug/L

Extraction Method: 3005A

Total Metals

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyst	Analyzed	<u>I/V</u>	F/V	Batch
Arsenic	ND (5.0)		6010C		1	KJK	06/09/17 18:30	100	10	CF70852
Iron	743 (10.0)		6010C		1	KJK	06/09/17 18:30	100	10	CF70852
Manganese	1280 (2.0)		6010C		1	KJK	06/09/17 18:30	100	10	CF70852

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Cross Road Landfill

Arsenic

Manganese

Iron

ESS Laboratory Work Order: 1706216

Quality Control Data

Quality Control Data												
				Spike	Source		%REC		RPD			
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier		
		[Dissolved M	etals								
Batch CF70837 - 200.7/6010BNoDigest												
Blank												
Arsenic	ND	5.0	ug/L									
Iron	ND	100	ug/L									
Manganese	ND	20.0	ug/L									
LCS												
Iron	2.4		mg/L	2.500		96	80-120					
Manganese	0.5		mg/L	0.5000		98	80-120					
LCS												
Arsenic	24.6		ug/L	25.00		98	80-120					
			Total Met	als								
Batch CF70852 - 3005A												
Blank												
Arsenic	ND	5.0	ug/L									
iron	ND	10.0	ug/L									
Manganese	ND	2.0	ug/L									
LCS												
Arsenic	51.6	5.0	ug/L	50.00		103	80-120					
Iron	231	10.0	ug/L	250.0		93	80-120					
Manganese	54.7	2.0	ug/L	50.00		109	80-120					
LCS Dup												

50.00

250.0

50.00

ug/L

ug/L

ug/L

100

90

91

80-120

80-120

80-120

3

3

18

20

20

20

50.1

226

45.6

5.0

10.0

2.0

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Cross Road Landfill

ESS Laboratory Work Order: 1706216

Notes and Definitions

U Analyte included in	the analysis, but not detected
-----------------------	--------------------------------

ND Analyte NOT DETECTED at or above the MRL (LOQ), LOD for DoD Reports, MDL for J-Flagged Analytes

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference Method Detection Limit **MDL** MRL Method Reporting Limit Limit of Detection LOD Limit of Quantitation LOQ **Detection Limit** DL Initial Volume I/V F/V Final Volume

Subcontracted analysis; see attached report

1 Range result excludes concentrations of surrogates and/or internal standards eluting in that range.

2 Range result excludes concentrations of target analytes eluting in that range.
3 Range result excludes the concentration of the C9-C10 aromatic range.

Avg Results reported as a mathematical average.

NR No Recovery
[CALC] Calculated Analyte

SUB Subcontracted analysis; see attached report

RL Reporting Limit

EDL Estimated Detection Limit

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

http://www.ESSLaboratory.com

The Microbiology Division of Thielsch Engineering, Inc.

ESS Laboratory Work Order: 1706216

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Cross Road Landfill

ESS LABORATORY CERTIFICATIONS AND ACCREDITATIONS

ENVIRONMENTAL

Rhode Island Potable and Non Potable Water: LAI00179 http://www.health.ri.gov/find/labs/analytical/ESS.pdf

Connecticut Potable and Non Potable Water, Solid and Hazardous Waste: PH-0750 http://www.ct.gov/dph/lib/dph/environmental_health/environmental_laboratories.pdf

Maine Potable and Non Potable Water, and Solid and Hazardous Waste: RI00002 http://www.maine.gov/dhhs/mecdc/environmental-health/dwp/partners/labCert.shtml

Massachusetts Potable and Non Potable Water: M-RI002 http://public.dep.state.ma.us/Labcert/Labcert.aspx

New Hampshire (NELAP accredited) Potable and Non Potable Water, Solid and Hazardous Waste: 2424 http://des.nh.gov/organization/divisions/water/dwgb/nhelap/index.htm

New York (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: 11313 http://www.wadsworth.org/labcert/elap/comm.html

New Jersey (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: RI006 http://datamine2.state.nj.us/DEP_OPRA/OpraMain/pi_main?mode=pi_by_site&sort_order=PI_NAMEA&Select+a+Site:=58715

United States Department of Agriculture Soil Permit: P330-12-00139

Pennsylvania: 68-01752 http://www.dep.pa.gov/Business/OtherPrograms/Labs/Pages/Laboratory-Accreditation-Program.aspx

ESS Laboratory Sample and Cooler Receipt Checklist

Client: GZA - Bedford, NH - GZA/HDM	ESS Project ID: 1706216 Date Received: 6/8/2017	
Shipped/Delivered Via: ESS Courier	Date Received: 6/8/2017 Project Due Date: 6/15/2017 Days for Project: 5 Day	_
Air bill manifest present? No NA NA	6. Does COC match bottles?	Yes
Were custody seals present? Yes	7. Is COC complete and correct?	Yes
Is radiation count <100 CPM? Yes Yes	8. Were samples received intact?	Yes
4. Is a Cooler Present? Yes Temp: 1.0 Iced with: Ice	9. Were labs informed about short holds & rushes?	Yes / No / NA
5. Was COC signed and dated by client? Yes	10. Were any analyses received outside of hold time?	Yes(No)
11. Any Subcontracting needed? ESS Sample IDs: Analysis:	12. Were VOAs received?a. Air bubbles in aqueous VOAs?b. Does methanol cover soil completely?	Yes No Yes / No Yes / No NA
Analysis: TAT:	b. Boes methanol cover son completely.	
13. Are the samples properly preserved? a. If metals preserved upon receipt: b. Low Level VOA vials frozen: Yes No Date: Date:	Time: By: Time: By:	_
Sample Receiving Notes:		
14. Was there a need to contact Project Manager? a. Was there a need to contact the client? Who was contacted? Date:	No / 	
Sample Container Proper Bubbles Sufficient Container Present Container Conta	ntainer Type Preservative Record pH (Cy Pestio	
01 10001-	nL Poly - HNO3 HNO3 nL Poly - HNO3 HNO3	
2nd Review Are barcode labels on correct containers? Completed By: Date & T	(/d/D 2my	
Reviewed By: Delivered By:	Time: (4/8/17) 7119	_

ESS L	aboratory	/		C	HAIN OF CUSTO	DY	ESS Lab# 106216										
Division of	Thielsch Engi	neering, Inc.		Turn Time	(5-Day) Rush		Reporti	ng		11/	A	Lac					
		anston RI 0291		Regulatory State			Limits					5W2					
100		x (401) 461-448	36		s project for any of the follo		Electon		- 1	Checker			Stand	dard Excel			
www.essla	boratory.com	npany Name		OCT RCP		RGP	Deliverat	oles [_]Othe	(Please	Specify	→)				T	\neg
62	A GEOEN	ntact Person		Project # 04, 002 1270, 28	Cross Road Land	anie 											
Chris.	topher Mell	V		5 COMMO	rca Park North		Analysis			13	My.	5					
Bed		1	NH s	tate	Zip Code	PO #	Ana		5	2 -	8						
603-T	elephone Nur 443 - 3863	mber	FAX	Number	Christopher. Mely	GZA. COM		1 Fe	7	Solve	Sselved	Solved					
ESS Lab	Collection Date	Collection Time	Sample Type	Sample Matrix	. ,	mple ID		Total	104	0.55	15.6	D .					
	6(7/2017	08:05	gray	Surface Water	WEIR - 0	l			//			7					
	6/7/20175	K															
														++			
														++			
									+			++		++	-		
									+			++		+	-		+
Co	ntainer Type:	AC-Air Casset	te AG-Amber Glas	ss B-BOD Bottle C	C-Cubitainer G - Glass O-	Other P-Poly S-Ster	rile V-Vial	P	+						+		
Conta	iner Volume:	1-100 mL 2	-2.5 gal 3-250 ml	4-300 mL 5-500	mL 6-1L 7-VOA 8-2	oz 9-4 oz 10-8 oz	11-Other*	3									
Presei	rvation Code:	1-Non Preserved	2-HCI 3-H2SO4	4-HNO3 5-NaOH 6-M	ethanol 7-Na2S2O3 8-ZnAce, Na			4									
						er of Containers per	Sample:	(+	+	1 -		•					
		Laborator	y Use Only		Sampled by : Sean	ellarsen											
	Present:	V			Comments:	Please spe	ecify "Othe	r" pre	serva	tive a	nd cor	tainers t	ypes in th	nis spac	е		
-	s Intact:		°c €														
Cooler Temperature.					Signature, Date & Time)	Relinquished By:	(Signature	Data	& Tin	20)		Receive	ed By: (Si	ignature	Date 9	Time)	
-0 WM 6/7/2017 (30 5 1) Au				6/7/2017	C S		P-L	7	110			J. (5)	Silatule,		-8-	-17	
080/200				(Signature, Date & Time)	Relinquished By:	(Signature	, Date				Receive	ed By: (Si	ignature,	Date &		110	
Tellos 08 me					M 6/8/172001												
				1	· ·												

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Christopher Melby GZA GeoEnvironmental, Inc. 5 Commerce Park North Bedford, NH 03110

RE: Cross Road Landfill (04.0021270.28)

ESS Laboratory Work Order Number: 1707013

This signed Certificate of Analysis is our approved release of your analytical results. These results are only representative of sample aliquots received at the laboratory. ESS Laboratory expects its clients to follow all regulatory sampling guidelines. Beginning with this page, the entire report has been paginated. This report should not be copied except in full without the approval of the laboratory. Samples will be disposed of thirty days after the final report has been delivered. If you have any questions or concerns, please feel free to call our Customer Service Department.

REVIEWED

By ESS Laboratory at 12:11 pm, Jul 12, 2017

Laurel Stoddard Laboratory Director

Analytical Summary

The project as described above has been analyzed in accordance with the ESS Quality Assurance Plan. This plan utilizes the following methodologies: US EPA SW-846, US EPA Methods for Chemical Analysis of Water and Wastes per 40 CFR Part 136, APHA Standard Methods for the Examination of Water and Wastewater, American Society for Testing and Materials (ASTM), and other recognized methodologies. The analyses with these noted observations are in conformance to the Quality Assurance In chromatographic analysis, manual integration is frequently used instead of integration because it produces more accurate results.

The test results present in this report are in compliance with TNI and relative state standards, and/or client Quality Assurance Project Plans (QAPP). The laboratory has reviewed the following: Sample Preservations, Hold Times, Initial Calibrations, Continuing Calibrations, Method Blanks, Blank Spikes, Blank Spike Duplicates, Duplicates, Matrix Spikes, Matrix Spike Duplicates, Surrogates and Internal Standards. Any results which were found to be outside of the recommended ranges stated in our SOPs will be noted in the Project Narrative.

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Cross Road Landfill

ESS Laboratory Work Order: 1707013

SAMPLE RECEIPT

The following samples were received on July 05, 2017 for the analyses specified on the enclosed Chain of Custody Record.

Lab Number 1707013-01

Sample Name WEIR-01

Matrix Surface Water

Analysis 6010C, 7010

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Cross Road Landfill

ESS Laboratory Work Order: 1707013

PROJECT NARRATIVE

No unusual observations noted.

End of Project Narrative.

DATA USABILITY LINKS

To ensure you are viewing the most current version of the documents below, please clear your internet cookies for www.ESSLaboratory.com. Consult your IT Support personnel for information on how to clear your internet cookies.

Definitions of Quality Control Parameters

Semivolatile Organics Internal Standard Information

Semivolatile Organics Surrogate Information

Volatile Organics Internal Standard Information

Volatile Organics Surrogate Information

EPH and VPH Alkane Lists

The Microbiology Division of Thielsch Engineering, Inc.

ESS Laboratory Work Order: 1707013

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Cross Road Landfill

CURRENT SW-846 METHODOLOGY VERSIONS

Analytical Methods

1010A - Flashpoint 6010C - ICP

6020A - ICP MS

7010 - Graphite Furnace7196A - Hexavalent Chromium7470A - Aqueous Mercury

7471B - Solid Mercury 8011 - EDB/DBCP/TCP

8015C - GRO/DRO

8081B - Pesticides 8082A - PCB

8100M - TPH 8151A - Herbicides

8260B - VOA 8270D - SVOA

8270D SIM - SVOA Low Level

9014 - Cyanide

9038 - Sulfate

9040C - Aqueous pH

9045D - Solid pH (Corrosivity) 9050A - Specific Conductance

9056A - Anions (IC)

9060A - TOC

9095B - Paint Filter

MADEP 04-1.1 - EPH / VPH

Prep Methods

3005A - Aqueous ICP Digestion

3020A - Aqueous Graphite Furnace / ICP MS Digestion 3050B - Solid ICP / Graphite Furnace / ICP MS Digestion

3060A - Solid Hexavalent Chromium Digestion

3510C - Separatory Funnel Extraction 3520C - Liquid / Liquid Extraction 3540C - Manual Soxhlet Extraction 3541 - Automated Soxhlet Extraction

3546 - Microwave Extraction

3580A - Waste Dilution

5030B - Aqueous Purge and Trap 5030C - Aqueous Purge and Trap 5035 - Solid Purge and Trap

SW846 Reactivity Methods 7.3.3.2 (Reactive Cyanide) and 7.3.4.1 (Reactive Sulfide) have been withdrawn by EPA. These methods are reported per client request and are not NELAP accredited.

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Cross Road Landfill

Client Sample ID: WEIR-01 Date Sampled: 07/03/17 08:35

Percent Solids: N/A

ESS Laboratory Work Order: 1707013 ESS Laboratory Sample ID: 1707013-01

Sample Matrix: Surface Water

Units: ug/L

Extraction Method: 200.7/6010BNoDigest

Dissolved Metals

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyst	Analyzed	<u>I/V</u>	F/V	Batch
Arsenic	9.3 (5.0)		7010		1	KJK	07/06/17 17:48	10	10	CG70613
Iron	643 (100)		6010C		1	KJK	07/06/17 11:26	10	10	CG70613
Manganese	1530 (20.0)		6010C		1	KJK	07/06/17 11:26	10	10	CG70613

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Cross Road Landfill

Client Sample ID: WEIR-01 Date Sampled: 07/03/17 08:35

Percent Solids: N/A

ESS Laboratory Work Order: 1707013 ESS Laboratory Sample ID: 1707013-01

Sample Matrix: Surface Water

Units: ug/L

Extraction Method: 3005A

Total Metals

Analyte	Results (MRL)	MDL	<u>Method</u> 7010	<u>Limit</u>	<u>DF</u>	Analyst KJK	<u>Analyzed</u> 07/07/17 19:18	<u>I/V</u> 200	<u>F/V</u> 20	Batch CG70619
Arsenic Iron	10.7 (2.5) 747 (10.0)		6010C		1	KJK	07/07/17 19:18	200	20	CG70619
Manganese	1500 (2.0)		6010C		1	KJK	07/07/17 11:11	200	20	CG70619

Page 6 of 11

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Cross Road Landfill

Arsenic

Manganese

Iron

ESS Laboratory Work Order: 1707013

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
		Ī	Dissolved M	etals						
Batch CG70613 - 200.7/6010BNoDigest										
Blank										
Arsenic	ND	5.0	ug/L							
Iron	ND	100	ug/L							
Manganese	ND	20.0	ug/L							
Blank										
Arsenic	ND	5.0	ug/L							
LCS										
Iron	2.4		mg/L	2.500		97	80-120			
Manganese	0.5		mg/L	0.5000		100	80-120			
LCS										
Arsenic	26.8		ug/L	25.00		107	80-120			
			Total Met	als						
Batch CG70619 - 3005A										
Blank										
Arsenic	ND	0.5	ug/L							
Iron	ND	10.0	ug/L							
Manganese	ND	2.0	ug/L							
LCS										
Arsenic	53.2	12.5	ug/L	50.00		106	80-120			
Iron	245	10.0	ug/L	250.0		98	80-120			
Manganese	53.1	2.0	ug/L	50.00		106	80-120			

50.00

250.0

50.00

ug/L

ug/L

ug/L

105

100

103

80-120

80-120

80-120

1

2

3

20

20

20

52.7

250

51.7

12.5

10.0

2.0

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Cross Road Landfill

ESS Laboratory Work Order: 1707013

Notes and Definitions

U A	nalvte in	cluded in	the analy	sis, but n	ot detected

D Diluted.

ND Analyte NOT DETECTED at or above the MRL (LOQ), LOD for DoD Reports, MDL for J-Flagged Analytes

dry Sample results reported on a dry weight basis

Relative Percent Difference **RPD** MDL Method Detection Limit MRL Method Reporting Limit LOD Limit of Detection LOQ Limit of Quantitation **Detection Limit** DL Initial Volume I/V F/V Final Volume

Subcontracted analysis; see attached report

1 Range result excludes concentrations of surrogates and/or internal standards eluting in that range.

2 Range result excludes concentrations of target analytes eluting in that range. 3 Range result excludes the concentration of the C9-C10 aromatic range.

Avg Results reported as a mathematical average.

NR No Recovery

[CALC] Calculated Analyte

SUB Subcontracted analysis; see attached report

RL Reporting Limit

EDL Estimated Detection Limit

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

http://www.ESSLaboratory.com

The Microbiology Division of Thielsch Engineering, Inc.

ESS Laboratory Work Order: 1707013

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Cross Road Landfill

ESS LABORATORY CERTIFICATIONS AND ACCREDITATIONS

ENVIRONMENTAL

Rhode Island Potable and Non Potable Water: LAI00179 http://www.health.ri.gov/find/labs/analytical/ESS.pdf

Connecticut Potable and Non Potable Water, Solid and Hazardous Waste: PH-0750 http://www.ct.gov/dph/lib/dph/environmental_health/environmental_laboratories.pdf

Maine Potable and Non Potable Water, and Solid and Hazardous Waste: RI00002 http://www.maine.gov/dhhs/mecdc/environmental-health/dwp/partners/labCert.shtml

Massachusetts Potable and Non Potable Water: M-RI002 http://public.dep.state.ma.us/Labcert/Labcert.aspx

New Hampshire (NELAP accredited) Potable and Non Potable Water, Solid and Hazardous Waste: 2424 http://des.nh.gov/organization/divisions/water/dwgb/nhelap/index.htm

New York (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: 11313 http://www.wadsworth.org/labcert/elap/comm.html

New Jersey (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: RI006 http://datamine2.state.nj.us/DEP_OPRA/OpraMain/pi_main?mode=pi_by_site&sort_order=PI_NAMEA&Select+a+Site:=58715

United States Department of Agriculture Soil Permit: P330-12-00139

Pennsylvania: 68-01752 http://www.dep.pa.gov/Business/OtherPrograms/Labs/Pages/Laboratory-Accreditation-Program.aspx

185 Frances Avenue, Cranston, RI 02910-2211

Tel· 401-461-7181

Fax: 401-461-4486

http://www.ESSLaboratory.com

ESS Laboratory Sample and Cooler Receipt Checklist

Delivered By:	7/5/7 1842	
By: Date & T		
2nd Review Are barcode labels on rairest containers? Completed Yes)NO 7/1/2 1020	
	mL Poly - HNO3 HNO3 mL Poly - HNO3 HNO3	
Number ID Container Present	ontainer Type Preservative Record pH (Cy Pestic	
14. Was there a need to contact Project Manager? a. Was there a need to contact the client? Who was contacted? Date:	<u> </u>	
Sample Receiving Notes:		······································
13. Are the samples properly preserved? a. If metals preserved upon receipt: b. Low Level VOA vials frozen: Yes No Date: Date:	Time: By:	
11. Any Subcontracting needed? ESS Sample IDs: Analysis: TAT:	12. Were VOAs received?a. Air bubbles in aqueous VOAs?b. Does methanol cover soil completely?	Yes / (No) Yes / No (NA) Yes / No (NA)
5. Was COC signed and dated by client? Yes	10. Were any analyses received outside of hold time?	Yes (No)
4. Is a Cooler Present? Yes Temp: 1.9 Iced with: Ice	9. Were labs informed about short holds & rushes?	Yes / No/ NA
3. Is radiation count <100 CPM? Yes Yes	8. Were samples received intact?	Yes
2. Were custody seals present?	7. Is COC complete and correct?	Yes
1. Air bill manifest present? No NA NA	6. Does COC match bottles?	Yes
Shipped/Delivered Via: ESS Courier	Project Due Date: 7/12/2017 Days for Project: 5 Day	
Client: GZA - Bedford, NH - GZA/HDM	Date Received: 7/5/2017	<u> </u>
Client: G7A - Bedford MH - G7A/HDM	ESS Project ID: 1707013	

	ESS L	aboratory	<i>i</i> .		С	CHAIN OF CUSTODY		ESS Lab	#		10	70	3						
Ĺ	Division of	Thielsch Engi	neering, Inc.		Turn Time	5-Day Rush		Reportin	g	4/11	Λ.	۸۲							
1	85 France	es Avenue, Cra	anston RI 0291	10 -	Regulatory State			Limits			AG	(A)							
			x (401) 461-44	86		s project for any of the follow		Electoni	ام اسا	Limit Cl	necker	~ic.	DIE	Stand	dard Excel	3			
}	ww.essla	boratory.com			OCT RCP			Deliverab	ies /	JOther (Please	specity –	•) <i>t yt</i>					т т	
	62	A GRENEN	npany Name WIMMUTA	(Project # 04. 0€2(270.78	Cross Road Leagh	(]											
ſ	Chr	Stipher 99	ntact Person Uliy		5 Com	HUCL PACK North		ysis		١ "	ابی	Z V				1 1			
r	Z,	Lord City	· · · · · · · · · · · · · · · · · · ·	NH s	tate	Zip Code O 3/10	PO#	Analysis	12/2	2 0	3	3 7	s						
. }		elephone Nu	mber		Number	Email Addro	ess	- `	داچ:	.	3	1.554/ved	<u> </u>						
		0.00						<u> </u>	5 tr/	2 3	dissolved	disselve							
	ESS Lab ID	Collection Date	Collection Time	Sample Type	Sample Matrix	Sam	ple ID		, T		2						\bot		
ſ		7/3/2017	88:35	grab	Suffece water	WEIR-	3 l		$X \rangle$	$\langle\!\langle\!\rangle$	X	$\times\!\!\!/\!$							
Ì		, ,	1)															
ţ						- · · · · · - · - · · · · · · · · · · ·	•												
}				 											+				
ŀ	···-										 		+-	+ +	-		+	1	
-										-	-		 			$\vdash \vdash$	+		
													1 1		'	-		-	
													1-1-			$\perp \perp$			
Ì																			
ł																			
ł		ntainer Tyne	AC-Air Casse	tte AG-Amber Gla	iss B-BOD Bottle (L C-Cubitainer G - Glass O-O	ther P-Poly S-Sto	erile V-Vial	0 1	PP	P	P	,	++		 	_	+ +	_
Ì			: 1-100 mL 2					11-Other*	5 -		5						\top	1	
ł				•		ethanol 7-Na2S2O3 8-ZnAce, NaC			4 -	>-	4	>	- -						_
.	11636	Tration Octo	/				of Containers per		1	>	(
			Laborato	ry Use Only		rellasson													
	Coole	r Present:				Comments:		ecify "Othe	r" pres	servat	ive ar	d cont	ainers ty	/pes in t	his spa	ice			
	Sea	ls Intact:	1/8	-		· Dissolved metal	sample cults fi	lfwed											
	Cooler T	emperature:	1.9	·c rul															
_	R	elinquished by	r: (Signature, D	ate & Time)	Received By:	(Signature, Date & Time)	Relinquished B				e)	_	Receive	ed By: (S	ignature		e & Tim		, .
Jama 11	Sean	Ellason	7/3/2017	10:00	GZA fridged W	1 custody seal 10:00	tridge	•	7-5-	110		/_	9/	1	\overline{Z}			110	0
5	R	elinquished by	r: (Signature, D		Reseived By;	(Signature, Date & Time)	Relinquished B	y: (Signature	. Date	& Time	e)		Receive	ed By: (S	ignatur	e, Date	≥ & Tim	ne)	
-		gle	25	17-5-17		111/17/5/17 1835		-					:						

1

P

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Dawna Tousignant GZA GeoEnvironmental, Inc. 5 Commerce Park North Bedford, NH 03110

RE: Exeter Landfill (04.0021270.28)

ESS Laboratory Work Order Number: 1708173

This signed Certificate of Analysis is our approved release of your analytical results. These results are only representative of sample aliquots received at the laboratory. ESS Laboratory expects its clients to follow all regulatory sampling guidelines. Beginning with this page, the entire report has been paginated. This report should not be copied except in full without the approval of the laboratory. Samples will be disposed of thirty days after the final report has been delivered. If you have any questions or concerns, please feel free to call our Customer Service Department.

Laurel Stoddard Laboratory Director **REVIEWED**

By ESS Laboratory at 3:20 pm, Aug 16, 2017

Analytical Summary

The project as described above has been analyzed in accordance with the ESS Quality Assurance Plan. This plan utilizes the following methodologies: US EPA SW-846, US EPA Methods for Chemical Analysis of Water and Wastes per 40 CFR Part 136, APHA Standard Methods for the Examination of Water and Wastewater, American Society for Testing and Materials (ASTM), and other recognized methodologies. The analyses with these noted observations are in conformance to the Quality Assurance Plan. In chromatographic analysis, manual integration is frequently used instead of automated integration because it produces more accurate results.

The test results present in this report are in compliance with TNI and relative state standards, and/or client Quality Assurance Project Plans (QAPP). The laboratory has reviewed the following: Sample Preservations, Hold Times, Initial Calibrations, Continuing Calibrations, Method Blanks, Blank Spikes, Blank Spike Duplicates, Duplicates, Matrix Spikes, Matrix Spike Duplicates, Surrogates and Internal Standards. Any results which were found to be outside of the recommended ranges stated in our SOPs will be noted in the Project Narrative.

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

ESS Laboratory Work Order: 1708173 Client Project ID: Exeter Landfill

SAMPLE RECEIPT

The following samples were received on August 08, 2017 for the analyses specified on the enclosed Chain of Custody Record.

Lab Number 1708173-01

Sample Name Weir - 1

Matrix Surface Water

Analysis 6010C, 7010

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: Exeter Landfill ESS Laboratory Work Order: 1708173

PROJECT NARRATIVE

No unusual observations noted.

End of Project Narrative.

DATA USABILITY LINKS

To ensure you are viewing the most current version of the documents below, please clear your internet cookies for www.ESSLaboratory.com. Consult your IT Support personnel for information on how to clear your internet cookies.

Definitions of Quality Control Parameters

Semivolatile Organics Internal Standard Information

Semivolatile Organics Surrogate Information

Volatile Organics Internal Standard Information

Volatile Organics Surrogate Information

EPH and VPH Alkane Lists

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

http://www.ESSLaboratory.com

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: Exeter Landfill ESS Laboratory Work Order: 1708173

CURRENT SW-846 METHODOLOGY VERSIONS

Analytical Methods

1010A - Flashpoint

6010C - ICP

6020A - ICP MS

7010 - Graphite Furnace

7196A - Hexavalent Chromium

7470A - Aqueous Mercury

7471B - Solid Mercury

8011 - EDB/DBCP/TCP

8015C - GRO/DRO

8081B - Pesticides

8082A - PCB

8100M - TPH

8151A - Herbicides

8260B - VOA

8270D - SVOA

8270D SIM - SVOA Low Level

9014 - Cyanide

9038 - Sulfate

9040C - Aqueous pH

9045D - Solid pH (Corrosivity)

9050A - Specific Conductance

9056A - Anions (IC)

9060A - TOC

9095B - Paint Filter

MADEP 04-1.1 - EPH / VPH

Prep Methods

3005A - Aqueous ICP Digestion

3020A - Aqueous Graphite Furnace / ICP MS Digestion

3050B - Solid ICP / Graphite Furnace / ICP MS Digestion

3060A - Solid Hexavalent Chromium Digestion

3510C - Separatory Funnel Extraction

3520C - Liquid / Liquid Extraction

3540C - Manual Soxhlet Extraction

3541 - Automated Soxhlet Extraction

3546 - Microwave Extraction

3580A - Waste Dilution

5030B - Aqueous Purge and Trap

5030C - Aqueous Purge and Trap

5035 - Solid Purge and Trap

SW846 Reactivity Methods 7.3.3.2 (Reactive Cyanide) and 7.3.4.1 (Reactive Sulfide) have been withdrawn by EPA. These methods are reported per client request and are not NELAP accredited.

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: Exeter Landfill Client Sample ID: Weir - 1 Date Sampled: 08/07/17 11:55

Percent Solids: N/A

ESS Laboratory Work Order: 1708173 ESS Laboratory Sample ID: 1708173-01

Sample Matrix: Surface Water

Units: ug/L

Extraction Method: 200.7/6010BNoDigest

Dissolved Metals

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyst	Analyzed	<u>I/V</u>	F/V	Batch
Arsenic	15.7 (5.0)		7010		1	KJK	08/12/17 21:47	10	10	CH70919
Iron	1120 (100)		6010C		1	KJK	08/09/17 19:37	10	10	CH70919
Manganese	1750 (20.0)		6010C		1	KJK	08/09/17 19:37	10	10	CH70919

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: Exeter Landfill Client Sample ID: Weir - 1

Date Sampled: 08/07/17 11:55

Percent Solids: N/A

ESS Laboratory Work Order: 1708173 ESS Laboratory Sample ID: 1708173-01

Sample Matrix: Surface Water

Units: ug/L

Extraction Method: 3005A

Total Metals

Analyte	Results (MRL)	<u>MDL</u>	Method	<u>Limit</u>	<u>DF</u>	Analyst		<u>I/V</u>	<u>F/V</u>	Batch
Arsenic	36.2 (5.0)		7010		10	KJK	08/10/17 23:47	200	20	CH70835
Iron	5410 (10.0)		6010C		1	KJK	08/10/17 17:00	200	20	CH70835
Manganese	1900 (2.0)		6010C		1	KJK	08/10/17 17:00	200	20	CH70835

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: Exeter Landfill ESS Laboratory Work Order: 1708173

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifie
		I	Dissolved M	etals						
Batch CH70919 - 200.7/6010BNoDigest										
Blank										
Arsenic	ND	5.0	ug/L							
Blank										
Iron	ND	100	ug/L							
Manganese	ND	20.0	ug/L							
Blank										
Iron	ND	100	ug/L							
Manganese	ND	20.0	ug/L							
LCS										
Iron	2.5		mg/L	2.500		99	80-120			
Manganese	0.5		mg/L	0.5000		98	80-120			
LCS										
Arsenic	24.6		ug/L	25.00		98	80-120			
			Total Met	als						
Batch CH70835 - 3005A										
Blank										
Arsenic	ND	0.5	ug/L							
Iron	ND	10.0	ug/L							
Manganese	ND	2.0	ug/L							
LCS										
Arsenic	46.8	12.5	ug/L	50.00		94	80-120			
Iron	231	10.0	ug/L	250.0		92	80-120			
Manganese	50.2	2.0	ug/L	50.00		100	80-120			
LCS Dup										
Arsenic	45.4	12.5	ug/L	50.00		91	80-120	3	20	

250.0

50.00

ug/L

ug/L

230

50.7

Iron

Manganese

10.0

2.0

Quality

80-120

80-120

101

0.4

0.9

20

20

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: Exeter Landfill ESS Laboratory Work Order: 1708173

Notes and Definitions

U Analyte included in the analysis, but not detected	
--	--

D Diluted.

ND Analyte NOT DETECTED at or above the MRL (LOQ), LOD for DoD Reports, MDL for J-Flagged Analytes

dry Sample results reported on a dry weight basis

Relative Percent Difference **RPD** MDL Method Detection Limit MRL Method Reporting Limit LOD Limit of Detection LOQ Limit of Quantitation **Detection Limit** DL Initial Volume I/V F/V Final Volume

Subcontracted analysis; see attached report

1 Range result excludes concentrations of surrogates and/or internal standards eluting in that range.

2 Range result excludes concentrations of target analytes eluting in that range. 3 Range result excludes the concentration of the C9-C10 aromatic range.

Avg Results reported as a mathematical average.

NR No Recovery

[CALC] Calculated Analyte

SUB Subcontracted analysis; see attached report

RL Reporting Limit

EDL Estimated Detection Limit

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: Exeter Landfill ESS Laboratory Work Order: 1708173

ESS LABORATORY CERTIFICATIONS AND ACCREDITATIONS

ENVIRONMENTAL

Rhode Island Potable and Non Potable Water: LAI00179 http://www.health.ri.gov/find/labs/analytical/ESS.pdf

Connecticut Potable and Non Potable Water, Solid and Hazardous Waste: PH-0750 http://www.ct.gov/dph/lib/dph/environmental_health/environmental_laboratories.pdf

Maine Potable and Non Potable Water, and Solid and Hazardous Waste: RI00002 http://www.maine.gov/dhhs/mecdc/environmental-health/dwp/partners/labCert.shtml

Massachusetts Potable and Non Potable Water: M-RI002 http://public.dep.state.ma.us/Labcert/Labcert.aspx

New Hampshire (NELAP accredited) Potable and Non Potable Water, Solid and Hazardous Waste: 2424 http://des.nh.gov/organization/divisions/water/dwgb/nhelap/index.htm

New York (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: 11313 http://www.wadsworth.org/labcert/elap/comm.html

New Jersey (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: RI006 http://datamine2.state.nj.us/DEP_OPRA/OpraMain/pi_main?mode=pi_by_site&sort_order=PI_NAMEA&Select+a+Site:=58715

United States Department of Agriculture Soil Permit: P330-12-00139

Pennsylvania: 68-01752 http://www.dep.pa.gov/Business/OtherPrograms/Labs/Pages/Laboratory-Accreditation-Program.aspx

ESS Laboratory Sample and Cooler Receipt Checklist

Client: GZA - Bedford, NH - GZA/HDM	ESS Project ID: 1708173
Shipped/Delivered Via: ESS Courier	Date Received: 8/8/2017 Project Due Date: 8/16/2017 Days for Project: 5 Day
1. Air bill manifest present? No NA NA	6. Does COC match bottles? Yes
Were custody seals present? Yes	7. Is COC complete and correct? Yes
3. Is radiation count <100 CPM? Yes	Were samples received intact? Yes Yes
4. Is a Cooler Present? Yes Temp: 3.1 Iced with: Ice	9. Were labs informed about short holds & rushes? Yes / No
Was COC signed and dated by client? Yes	10. Were any analyses received outside of hold time?
11. Any Subcontracting needed? ESS Sample IDs: Analysis: TAT:	12. Were VOAs received? a. Air bubbles in aqueous VOAs? b. Does methanol cover soil completely? Yes (No Yes / No NA
13. Are the samples properly preserved? a. If metals preserved upon receipt: b. Low Level VOA vials frozen: Date:	Time: By: Time: By:
Sample Receiving Notes:	
14. Was there a need to contact Project Manager? a. Was there a need to contact the client? Who was contacted? Date:	
Number 1D Container Present Volume	ontainer Type Preservative Record pH (Cyanide and 608 Pesticides)
	nL Poly - HNO3 HNO3 nL Poly - HNO3 HNO3
2nd Review Are barcode labels on correct containers? Completed By: Reviewed By: Delivered By:	Time: 88/17 1703
DATE 8/7/17 SEAL Quality Environmental Contain 800-255-3950 • 304-255-390	

ESS L	aboratory	/		(CHAIN OF CUSTO	DY	ESS La	b#	1	705/1-	72				
Division of Thielsch Engineering, Inc. Turn Time			5-Day Rush	ESS Lab # 708173											
185 Frances Avenue, Cranston RI 02910 Regulatory State			Tusii		Limit		NHA	GQS							
Tel. (401) 461-7181 Fax (401) 461-4486 Is thi				is project for any of the following?:			Limit	Checker		Standard Ex	cel				
www.essla	boratory.com			OCT RCF	O	Electonic									
Company Name Project # 21270.28 Contact Person 5 Comm Bedford Vy Telephone Number EAX Number				Exeter Land Sill	airie					T					
Danie	Cor	ntact Person		5 Com	A 1.1	is.									
Dan	40 City	ignant	S	tate	5 Commerce Park N. Zip Code PO#										
Bea	ford		NHS	tate Zip Code Po		FO#	Analysis	Metals	Metals						
	elephone Nur		FAX	Number Email Address			20	0							
ESS Lab		Collection		T	· dawna. tousignant	agza.com			150						
ID	Date	Time	Sample Type	Sample Matrix	Sa	mole ID		Total	Dissolved						
1	8/7/17	1155	Grab	SW	Weir-1			×	×						
														11	
													++		
									-	+++			+		-
						-				+				\perp	_
															1
Cor	ntainer Type:	AC-Air Casset	te AG-Amber Glas	s B-BOD Bottle (C-Cubitainer G - Glass O-0	Other P-Poly S-Ster	rile V-Vial	P	P	+			+	+	+
Conta	iner Volume:	1-100 mL 2-	-2.5 gal 3-250 mL	4-300 mL 5-500) mL 6-1L 7-VOA 8-2 o	z 9-4 oz 10-8 oz	11-Other*		5				+	++	+
					ethanol 7-Na2S2O3 8-ZnAce, Na			-	4				+	+	+
						er of Containers per		1	/				+		+
		Laboratory	Use Only		Sampled by :			-							
Cooler Present:			Comments: Please specify "Other" preservative and containers types in this space												
Seals Intact:			Total Metals: Fe, Mn, As Disselved Metals: Fe, Mn, As (Fred Siltered)												
	mperature:		°C Ite		Disselved Melds: Fe,	Mn. As (Fred	1 Siltere	2)							
Re	inquished by:	(Signature, Da	te & Time)	Received By:	(Signature, Date & Time)	Relinquished By:	(Signature	, Date	& Tim	e)	Received I	By: (Signatur	e, Date &	Time)	
Erik) 5/11/11	8/7/	7 1325	Custody Sand Fridge							8-	8-1	7		
Rel	inquished by:	(Signature, Da			(Signature, Date & Time)		Relinquished By: (Signature, Date & Time) Received By: (Signature, Date & Time)					Time)			
1	Ms	8	5-17/610		8/8/17 1701					,		- j. (o.g.,atai	-, Date 4		

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Dawna Tousignant GZA GeoEnvironmental, Inc. 5 Commerce Park North Bedford, NH 03110

RE: Exeter Landfill (04.0021270.28)

ESS Laboratory Work Order Number: 1709082

This signed Certificate of Analysis is our approved release of your analytical results. These results are only representative of sample aliquots received at the laboratory. ESS Laboratory expects its clients to follow all regulatory sampling guidelines. Beginning with this page, the entire report has been paginated. This report should not be copied except in full without the approval of the laboratory. Samples will be disposed of thirty days after the final report has been delivered. If you have any questions or concerns, please feel free to call our Customer Service Department.

REVIEWED

By ESS Laboratory at 2:11 pm, Sep 14, 2017

Laurel Stoddard Laboratory Director

Analytical Summary

The project as described above has been analyzed in accordance with the ESS Quality Assurance Plan. This plan utilizes the following methodologies: US EPA SW-846, US EPA Methods for Chemical Analysis of Water and Wastes per 40 CFR Part 136, APHA Standard Methods for the Examination of Water and Wastewater, American Society for Testing and Materials (ASTM), and other recognized methodologies. The analyses with these noted observations are in conformance to the Quality Assurance Plan. In chromatographic analysis, manual integration is frequently used instead of automated integration because it produces more accurate results.

The test results present in this report are in compliance with TNI and relative state standards, and/or client Quality Assurance Project Plans (QAPP). The laboratory has reviewed the following: Sample Preservations, Hold Times, Initial Calibrations, Continuing Calibrations, Method Blanks, Blank Spikes, Blank Spike Duplicates, Duplicates, Matrix Spikes, Matrix Spike Duplicates, Surrogates and Internal Standards. Any results which were found to be outside of the recommended ranges stated in our SOPs will be noted in the Project Narrative.

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: Exeter Landfill ESS Laboratory Work Order: 1709082

SAMPLE RECEIPT

The following samples were received on September 06, 2017 for the analyses specified on the enclosed Chain of Custody Record.

Lab Number 1709082-01

Sample Name Weir-1 Matrix Surface Water **Analysis** 6010C, 7010

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: Exeter Landfill ESS Laboratory Work Order: 1709082

PROJECT NARRATIVE

No unusual observations noted.

End of Project Narrative.

DATA USABILITY LINKS

To ensure you are viewing the most current version of the documents below, please clear your internet cookies for www.ESSLaboratory.com. Consult your IT Support personnel for information on how to clear your internet cookies.

Definitions of Quality Control Parameters

Semivolatile Organics Internal Standard Information

Semivolatile Organics Surrogate Information

Volatile Organics Internal Standard Information

Volatile Organics Surrogate Information

EPH and VPH Alkane Lists

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Dependability

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: Exeter Landfill ESS Laboratory Work Order: 1709082

CURRENT SW-846 METHODOLOGY VERSIONS

Analytical Methods

1010A - Flashpoint

6010C - ICP

6020A - ICP MS

7010 - Graphite Furnace

7196A - Hexavalent Chromium

7470A - Aqueous Mercury

7471B - Solid Mercury

8011 - EDB/DBCP/TCP

8015C - GRO/DRO

8081B - Pesticides

8082A - PCB

8100M - TPH

8151A - Herbicides

8260B - VOA

8270D - SVOA

8270D SIM - SVOA Low Level

9014 - Cyanide

9038 - Sulfate

9040C - Aqueous pH

9045D - Solid pH (Corrosivity)

9050A - Specific Conductance

9056A - Anions (IC)

9060A - TOC

9095B - Paint Filter

MADEP 04-1.1 - EPH / VPH

Prep Methods

3005A - Aqueous ICP Digestion

3020A - Aqueous Graphite Furnace / ICP MS Digestion

3050B - Solid ICP / Graphite Furnace / ICP MS Digestion

3060A - Solid Hexavalent Chromium Digestion

3510C - Separatory Funnel Extraction

3520C - Liquid / Liquid Extraction

3540C - Manual Soxhlet Extraction

3541 - Automated Soxhlet Extraction

3546 - Microwave Extraction

3580A - Waste Dilution

5030B - Aqueous Purge and Trap

5030C - Aqueous Purge and Trap

5035 - Solid Purge and Trap

SW846 Reactivity Methods 7.3.3.2 (Reactive Cyanide) and 7.3.4.1 (Reactive Sulfide) have been withdrawn by EPA. These methods are reported per client request and are not NELAP accredited.

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: Exeter Landfill

Client Sample ID: Weir-1 Date Sampled: 09/05/17 08:25

Percent Solids: N/A

ESS Laboratory Work Order: 1709082 ESS Laboratory Sample ID: 1709082-01

Sample Matrix: Surface Water

Units: ug/L

Extraction Method: 200.7/6010BNoDigest

Dissolved Metals

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyst	Analyzed	<u>I/V</u>	F/V	Batch
Arsenic	7.0 (5.0)		7010		1	KJK	09/13/17 14:58	10	10	CI70702
Iron	933 (100)		6010C		1	KJK	09/07/17 12:32	10	10	CI70702
Manganese	1940 (20.0)		6010C		1	KJK	09/07/17 12:32	10	10	CI70702

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: Exeter Landfill

Client Sample ID: Weir-1 Date Sampled: 09/05/17 08:25

Percent Solids: N/A

ESS Laboratory Work Order: 1709082 ESS Laboratory Sample ID: 1709082-01

Sample Matrix: Surface Water

Units: ug/L

Extraction Method: 3005A

Total Metals

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyst	Analyzed	<u>I/V</u>	F/V	Batch
Arsenic	8.6 (2.5)		7010		5	KJK	09/13/17 14:47	100	10	CI70655
Iron	1080 (10.0)		6010C		1	BJV	09/08/17 21:40	100	10	CI70655
Manganese	1740 (2.0)		6010C		1	BJV	09/08/17 21:40	100	10	CI70655

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Manganese

Client Project ID: Exeter Landfill ESS Laboratory Work Order: 1709082

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
		I	Dissolved M	etals						
Batch CI70702 - 200.7/6010BNoDigest										
Blank										
Arsenic	ND	5.0	ug/L							
Iron	ND	100	ug/L							
Manganese	ND	20.0	ug/L							
LCS										
Iron	2.5		mg/L	2.500		100	80-120			
Manganese	0.5		mg/L	0.5000		98	80-120			
LCS										
Arsenic	25.9		ug/L	25.00		104	80-120			
			Total Met	als						
Batch CI70655 - 3005A										
Blank										
Arsenic	ND	0.5	ug/L							
Iron	ND	10.0	ug/L							
Manganese	ND	2.0	ug/L							
LCS										
Arsenic	49.5	12.5	ug/L	50.00		99	80-120			
Iron	230	10.0	ug/L	250.0		92	80-120			
Manganese	52.3	2.0	ug/L	50.00		105	80-120			
LCS Dup										
Arsenic	49.8	12.5	ug/L	50.00		100	80-120	0.7	20	
Iron	231	10.0	ug/L	250.0		92	80-120	0.2	20	

ug/L

50.00

52.0

2.0

20

104

80-120

0.7

Amalesta in also dad in the amalessia. But not detected

BAL Laboratory

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: Exeter Landfill ESS Laboratory Work Order: 1709082

Notes and Definitions

U	Analyte included in the analysis, but not detected
D	Diluted.
ND	Analyte NOT DETECTED at or above the MRL (LOQ), LOD for DoD Reports, MDL for J-Flagged Analytes
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference

MDL Method Detection Limit
MRL Method Reporting Limit
LOD Limit of Detection
LOQ Limit of Quantitation
DL Detection Limit
I/V Initial Volume
F/V Final Volume

§ Subcontracted analysis; see attached report

1 Range result excludes concentrations of surrogates and/or internal standards eluting in that range.

2 Range result excludes concentrations of target analytes eluting in that range. 3 Range result excludes the concentration of the C9-C10 aromatic range.

Avg Results reported as a mathematical average.

NR No Recovery

[CALC] Calculated Analyte

SUB Subcontracted analysis; see attached report

RL Reporting Limit

EDL Estimated Detection Limit

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: Exeter Landfill ESS Laboratory Work Order: 1709082

ESS LABORATORY CERTIFICATIONS AND ACCREDITATIONS

ENVIRONMENTAL

Rhode Island Potable and Non Potable Water: LAI00179 http://www.health.ri.gov/find/labs/analytical/ESS.pdf

Connecticut Potable and Non Potable Water, Solid and Hazardous Waste: PH-0750 http://www.ct.gov/dph/lib/dph/environmental health/environmental laboratories/pdf/OutofStateCommercialLaboratories.pdf

Maine Potable and Non Potable Water, and Solid and Hazardous Waste: RI00002 http://www.maine.gov/dhhs/mecdc/environmental-health/dwp/partners/labCert.shtml

Massachusetts Potable and Non Potable Water: M-RI002 http://public.dep.state.ma.us/Labcert/Labcert.aspx

New Hampshire (NELAP accredited) Potable and Non Potable Water, Solid and Hazardous Waste: 2424 http://des.nh.gov/organization/divisions/water/dwgb/nhelap/index.htm

New York (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: 11313 http://www.wadsworth.org/labcert/elap/comm.html

New Jersey (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: RI006 http://datamine2.state.nj.us/DEP_OPRA/OpraMain/pi_main?mode=pi_by_site&sort_order=PI_NAMEA&Select+a+Site:=58715

United States Department of Agriculture Soil Permit: P330-12-00139

Pennsylvania: 68-01752 http://www.dep.pa.gov/Business/OtherPrograms/Labs/Pages/Laboratory-Accreditation-Program.aspx

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

Service

ESS L	aboratory	/		С	HAIN OF CUSTO	PΥ	ESS La	b #	\bigcap	7087					
Division of	Thielsch Engi	ineering, Inc.		Turn Time	6-Day Rush		Reporti	ng	.,.	<u>, </u>					
	•	anston RI 0291		Regulatory State	NA		Limit								
, ,		x (401) 461-448 0.	86 	Is thi	s project for any of the follow	wing?: RGP	Elector		Limit Che		-	Standard Exc	el		
www.essla	aboratory.com	mnany Name	seef \$ 04.00 Z 1270.	Project #	Project Na		Delivera	Dies	Other (Pi	ease Specify –	·)	'	Т	$\neg \neg$	
GZA	GeoEnvin	nment		34.6190	Exeter LF	iiie									i 1
7	TOUS	mpany Name on mend- ntact Person ignorit		٠. ٠ ٠	Address Cork N.	 -	sis	2	natul		1	1 1			
1,200	City	gnont	NH	tate	Zip Code	PO#	Analysis	Metels	1						
TSed !	send		NH		03310		¥	7,	시						1
(00)	Telephone Nui 3ーフォス ー	mber 0740	FAX N	lumber	Email Addr Jawna . tousignant	ess Deza com									
	Collection Date	Collection	Sample Type	Sample Matrix		nple ID	<u> </u>	Total	Diss.						
1	9/5/17	0825	6	SW	Weir-1			B	A						
<u> </u>	4/5/17	0825	6	SW EB	>										
	-1 -{1 -	0027	6	300		- :					+ + +	- 	╁┈├	+	
						<u></u>									
					 			İ				1 1			
		<u> </u>	ļ					1			 		++	+	
		ı		!											
_											\top				1 1
	-			 - -	<u> </u>		· · · · · · · · · · · · · · · · · · ·			-	+	+	+-+	+	
								 				\perp	$\downarrow \downarrow$	\dashv	
								'							1
							,								
	l to:	AC Air Connec	to AC Ambar Clar	ss B-BOD Bottle (Cubitaines G Glees O C	Other P-Poly S-Ste	arila V-Vial	0	0		+	 	++	+	
			-2.5 gal 3-250 ml			.			3			++-	++	+	
1					ethanol 7-Na2S2O3 8-ZnAce, NaC			4	4		+	- -	++	+++	
7,000						er of Containers per		1	1	<u> </u>					
<u> </u>		Laborator	y Use Only			yrness		-li							
Coole	r Present:				Comments:		ecify "Oth	er" pr	eservativ	e and cont	ainers types	in this sp	ace		
	ls Intact:	410.	-			Jals = Fe, M		·			•				
1		_NN_				Metals Sidd		_			ب. س				
Cooler Temperature: 4 °Cl CO CL					l				o 9 Timol	- 1	Received B	v. /Signahu	re Date	& Time	
					(Signature, Date & Time)	Relinquished By	y. (Signatur			- =	Merciven D	y. (Gigitatul			
Ent	D STYPE	9/51	17 5315 pm	· · · · · · · · · · · · · · · · · · ·							يو⊷ز				
R	elinguished by	(Signature, Da	ate & Time)	Received By:	(Signature, Date & Time)	Relinguished By	y:/(\$ignatur	e, Dat	e & Time)		Received B	y: (Signátu	re, Date	& Time)
	74	19/01	17 1741		9/6/17 1756										

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Dawna Tousignant GZA GeoEnvironmental, Inc. 5 Commerce Park North Bedford, NH 03110

RE: Cross Road Landfill (04.0021270.28)

ESS Laboratory Work Order Number: 1710037

This signed Certificate of Analysis is our approved release of your analytical results. These results are only representative of sample aliquots received at the laboratory. ESS Laboratory expects its clients to follow all regulatory sampling guidelines. Beginning with this page, the entire report has been paginated. This report should not be copied except in full without the approval of the laboratory. Samples will be disposed of thirty days after the final report has been delivered. If you have any questions or concerns, please feel free to call our Customer Service Department.

Laurel Stoddard

Laboratory Director

REVIEWED

By ESS Laboratory at 2:32 pm, Oct 11, 2017

Analytical Summary

The project as described above has been analyzed in accordance with the ESS Quality Assurance Plan. This plan utilizes the following methodologies: US EPA SW-846, US EPA Methods for Chemical Analysis of Water and Wastes per 40 CFR Part 136, APHA Standard Methods for the Examination of Water and Wastewater, American Society for Testing and Materials (ASTM), and other recognized methodologies. The analyses with these noted observations are in conformance to the Quality Assurance Plan. In chromatographic analysis, manual integration is frequently used instead of automated integration because it produces more accurate results.

The test results present in this report are in compliance with TNI and relative state standards, and/or client Quality Assurance Project Plans (QAPP). The laboratory has reviewed the following: Sample Preservations, Hold Times, Initial Calibrations, Continuing Calibrations, Method Blanks, Blank Spikes, Blank Spike Duplicates, Duplicates, Matrix Spikes, Matrix Spike Duplicates, Surrogates and Internal Standards. Any results which were found to be outside of the recommended ranges stated in our SOPs will be noted in the Project Narrative.

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Cross Road Landfill

ESS Laboratory Work Order: 1710037

SAMPLE RECEIPT

The following samples were received on October 03, 2017 for the analyses specified on the enclosed Chain of Custody Record.

Lab Number 1710037-01

Sample Name Weir-1 Matrix Surface Water **Analysis** 6010C, 7010

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Cross Road Landfill

ESS Laboratory Work Order: 1710037

PROJECT NARRATIVE

No unusual observations noted.

End of Project Narrative.

DATA USABILITY LINKS

To ensure you are viewing the most current version of the documents below, please clear your internet cookies for www.ESSLaboratory.com. Consult your IT Support personnel for information on how to clear your internet cookies.

Definitions of Quality Control Parameters

Semivolatile Organics Internal Standard Information

Semivolatile Organics Surrogate Information

Volatile Organics Internal Standard Information

Volatile Organics Surrogate Information

EPH and VPH Alkane Lists

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

ESS Laboratory Work Order: 1710037

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Cross Road Landfill

CURRENT SW-846 METHODOLOGY VERSIONS

Analytical Methods

1010A - Flashpoint 6010C - ICP

6020A - ICP MS

7010 - Graphite Furnace

7196A - Hexavalent Chromium

7470A - Aqueous Mercury

7471B - Solid Mercury

8011 - EDB/DBCP/TCP

8015C - GRO/DRO

8081B - Pesticides

8082A - PCB

8100M - TPH

8151A - Herbicides

8260B - VOA

8270D - SVOA

8270D SIM - SVOA Low Level

9014 - Cyanide

9038 - Sulfate

9040C - Aqueous pH

9045D - Solid pH (Corrosivity)

9050A - Specific Conductance

9056A - Anions (IC)

9060A - TOC

9095B - Paint Filter

MADEP 04-1.1 - EPH / VPH

Prep Methods

3005A - Aqueous ICP Digestion

3020A - Aqueous Graphite Furnace / ICP MS Digestion

3050B - Solid ICP / Graphite Furnace / ICP MS Digestion

3060A - Solid Hexavalent Chromium Digestion

3510C - Separatory Funnel Extraction

3520C - Liquid / Liquid Extraction

3540C - Manual Soxhlet Extraction

3541 - Automated Soxhlet Extraction

3546 - Microwave Extraction

3580A - Waste Dilution

5030B - Aqueous Purge and Trap

5030C - Aqueous Purge and Trap

5035 - Solid Purge and Trap

SW846 Reactivity Methods 7.3.3.2 (Reactive Cyanide) and 7.3.4.1 (Reactive Sulfide) have been withdrawn by EPA. These methods are reported per client request and are not NELAP accredited.

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Cross Road Landfill

Client Sample ID: Weir-1 Date Sampled: 10/02/17 11:30

Percent Solids: N/A

ESS Laboratory Work Order: 1710037 ESS Laboratory Sample ID: 1710037-01

Sample Matrix: Surface Water

Units: ug/L

Extraction Method: 200.7/6010BNoDigest

Dissolved Metals

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyst	Analyzed	<u>I/V</u>	F/V	Batch
Arsenic	5.9 (5.0)		7010		1	KJK	10/05/17 9:22	10	10	CJ70416
Iron	843 (100)		6010C		1	KJK	10/04/17 22:55	10	10	CJ70416
Manganese	1840 (20.0)		6010C		1	KJK	10/04/17 22:55	10	10	CJ70416

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Cross Road Landfill

Client Sample ID: Weir-1 Date Sampled: 10/02/17 11:30

Percent Solids: N/A

ESS Laboratory Work Order: 1710037 ESS Laboratory Sample ID: 1710037-01

Sample Matrix: Surface Water

Units: ug/L

Extraction Method: 3005A/200.7

Total Metals

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyst	Analyzed	I/V	F/V	Batch
Arsenic	5.1 (2.5)		7010		5	KJK	10/05/17 11:23	100	10	CJ70345
Iron	780 (20.0)		6010C		1	KJK	10/05/17 10:49	100	10	CJ70345
Manganese	1540 (2.0)		6010C		1	KJK	10/05/17 10:49	100	10	CJ70345

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Cross Road Landfill

Arsenic

Manganese

Iron

ESS Laboratory Work Order: 1710037

Quality Control Data

		Quali	ty Cont	.101 Da	ıta					
				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
		ı	Dissolved M	letals						
Batch CJ70416 - 200.7/6010BNoDigest										
Blank										
Arsenic	ND	5.0	ug/L							
Iron	ND	100	ug/L							
Manganese	ND	20.0	ug/L							
LCS										
Iron	2.5		mg/L	2.500		99	80-120			
Manganese	0.5		mg/L	0.5000		101	80-120			
LCS										
Arsenic	24.8		ug/L	25.00		99	80-120			
			Total Met	als						
Batch CJ70345 - 3005A/200.7										
Blank										
Arsenic	ND	0.5	ug/L							
Iron	ND	20.0	ug/L							
Manganese	ND	2.0	ug/L							
LCS										
Arsenic	52.2	12.5	ug/L	50.00		104	80-120			
Iron	213	20.0	ug/L	250.0		85	80-120			
Manganese	46.0	2.0	ug/L	50.00		92	80-120			
LCS Dup										

50.00

250.0

50.00

ug/L

ug/L

ug/L

103

89

93

80-120

80-120

80-120

1

4

1

20

20

20

51.7

222

46.5

12.5

20.0

2.0

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Cross Road Landfill

ESS Laboratory Work Order: 1710037

Notes and Definitions

IJ	Analyte	included	in the analy	vsis, but	not detected

D Diluted.

ND Analyte NOT DETECTED at or above the MRL (LOQ), LOD for DoD Reports, MDL for J-Flagged Analytes

dry Sample results reported on a dry weight basis

Relative Percent Difference **RPD** MDL Method Detection Limit MRL Method Reporting Limit LOD Limit of Detection LOQ Limit of Quantitation **Detection Limit** DL Initial Volume I/V F/V Final Volume

Subcontracted analysis; see attached report

1 Range result excludes concentrations of surrogates and/or internal standards eluting in that range.

2 Range result excludes concentrations of target analytes eluting in that range.
3 Range result excludes the concentration of the C9-C10 aromatic range.

Avg Results reported as a mathematical average.

NR No Recovery

[CALC] Calculated Analyte

SUB Subcontracted analysis; see attached report

RL Reporting Limit

EDL Estimated Detection Limit

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

ESS Laboratory Work Order: 1710037

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Cross Road Landfill

ESS LABORATORY CERTIFICATIONS AND ACCREDITATIONS

ENVIRONMENTAL

Rhode Island Potable and Non Potable Water: LAI00179 http://www.health.ri.gov/find/labs/analytical/ESS.pdf

Connecticut Potable and Non Potable Water, Solid and Hazardous Waste: PH-0750 http://www.ct.gov/dph/lib/dph/environmental_health/environmental_laboratories/pdf/OutofStateCommercialLaboratories.pdf

Maine Potable and Non Potable Water, and Solid and Hazardous Waste: RI00002 http://www.maine.gov/dhhs/mecdc/environmental-health/dwp/partners/labCert.shtml

Massachusetts Potable and Non Potable Water: M-RI002 http://public.dep.state.ma.us/Labcert/Labcert.aspx

New Hampshire (NELAP accredited) Potable and Non Potable Water, Solid and Hazardous Waste: 2424 http://des.nh.gov/organization/divisions/water/dwgb/nhelap/index.htm

New York (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: 11313 http://www.wadsworth.org/labcert/elap/comm.html

New Jersey (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: RI006 http://datamine2.state.nj.us/DEP_OPRA/OpraMain/pi_main?mode=pi_by_site&sort_order=PI_NAMEA&Select+a+Site:=58715

United States Department of Agriculture Soil Permit: P330-12-00139

Pennsylvania: 68-01752 http://www.dep.pa.gov/Business/OtherPrograms/Labs/Pages/Laboratory-Accreditation-Program.aspx

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

ESS Laboratory Sample and Cooler Receipt Checklist

Client:	GZ	A - Bedford,	NH - GZA/F	HDM			roject ID: _		10037		
Shipped/Do	elivered Via:		ESS Courie	er		Project D	Received: _ Due Date: _ r Project: _	10/	3/2017 11/2017 Day		
	nanifest pres			No]		6. Does COC I	match bottl	es?			Yes
2. Were cu	stody seals	present?		No		7. Is COC com	plete and	correct?			Yes
3. Is radiati	ion count <1	00 CPM?		Yes		8. Were sample	les receive	d intact?			Yes
	ler Present?	lced with:	Ice	Yes]	9. Were labs	informed a	about <u>short hol</u>	ds & rushes	<u>`</u> ?	Yes / No(NA
		d dated by cl	-	Yes]	10. Were any	analyses r	eceived outside	of hold time?	· `	res(/No)
	bcontracting Sample IDs: Analysis: TAT:			/No		12. Were VOA a. Air bubbles b. Does metha	in aqueou	•		,	Yes (No Yes / No Yes / No / NA
a. If metals b. Low Lev			ved?	Yes No Date: Date:		Time: Time:		By: By:			
	re a need to	o contact Pro		er? Date:	Yes No	Time:		Ву:			
											·
Sample Number	Container ID	Proper Container	Air Bubbles Present	Sufficient Volume	Containe	er Type	Prese	rvative	Record pl	l (Cyanide Pesticides)	
01 01	169388 169389	Yes Ye	NA NA	Yes Yes	500 mL Po 500 mL Po	•		103 103			
Completed By:	e labels on c	okebu dontair	pers?		Yes)/ No Date & Time:	18/3		<u>1740</u>			
Reviewed By:		Ly.	,		Date & Time:	_ 10 3 -)	1747			
Delivered By:		<u>2</u>				10/3/1)	1747			

ESS L	aboratory	/		С	HAIN OF C	USTO	ΟY	ESS La	b #			2	ě.		1710	03	\Im		
Division of	Thielsch Eng	ineering, Inc.		Turn Time 5 Days Regulatory State New Hampshire				Reporti					1						
106 South	Street, Hopkin	nton, MA 01748	3					Limits	s							7			
50 ACCOUNTS - 50		x (508) 435-99	12		s project for any			Elector			ta Check				~	Excel	DDC		
www.essla	boratory.com			OCT RCP	OMA MCP		RGP	Delivera	bles		her (Plea	se Specif	y →)				PDF		
		npany Name - Bedford, NH		Project # 04.0021270.28	С	Project Na ross Road L			Total Metals (See below)	Dissolved Metals (See below)									
		tact Person			Addre			Sis	pel	ee p									
	City	na Tousignant	l s	tate	5 Commerce F		PO #	Analysis	See	s (S									
	Bedford			NH	03110	0		_ ₹	lls (letal									
T	elephone Nu			Number		Email Add			Neta	≥ pe									
ECC Lab	603-232-87		(603)	624-9463 T	dawna	a.tousignant			<u>a</u>	solve									
ESS Lab	Collection Date	Collection Time	Sample Type	Sample Matrix		San	nple ID		Tot	Dis						\perp		-	
01	10-2-17	1130	Grab	Surface Water			Х	Х											
-							+												
									-					-			+	+	
									_						-	\perp		_	
									-	+		+	-	+				+	
									-	-		+		+		-		+	+-
									_			-			\vdash		_	-	
				lass B-BOD Bottle		J-Jar O-Ot		erile V-Vial	P	Р		-	-	_	-		_	+	
	ainer Volume:		_	nL 4-300 mL 5-500	and the same of th	OA 8-2 oz			5	5		-		+-				_	+
Prese	rvation Code:	1-Non Preserved	d 2-HCl 3-H2SO4	4-HNO3 5-NaOH 6-	MeOH 7-Na2S2O3		ber of Containers			1				+	+-	+		+	
		Laborator	V Use Only		Sampled by :		Bergen	- 3 3Pio		1									
Coole	r Present:		ODpóp Off		Comments:	18-7	Please s	pecify "Oth	er" p	rese	rvative	and co	ontaine	ers typ	es in th	nis spa	ce		
	s Intact:	~	Pickup		Total metals= Fe, Mn, and As														
Cooler T	emperature:	Testen 13.	C 10/3/177:1	1	Dissolved Metals= Fe, Mn, and As				Filter	ed)				1					
Re	linquished by:	(Signature, Da			ceived By: (Signature, Date & Time) Relinquished E						Time)		Re	ceive	By: (Si	gnature	e, Date	& Tim	e)
1	A	10-0		Custon	Bet Sed las-17/200 Eridge 10/3					105		4	100	2	£		10/3	117	12,00
Re	Inquished by:	(Signature, Da	ate & Time)	Received By:	(Signature, Date &	& Time)	Relinquished B	By: (Signatur	e, Da	ate &	Time)	/	Re	ceived	By: (Si	gnature	e, Date	& I Im	e)
M/~		16/2/17	17:11									1							

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Dawna Tousignant GZA GeoEnvironmental, Inc. 5 Commerce Park North Bedford, NH 03110

RE: Exeter Landfill (04.0021270.28)

ESS Laboratory Work Order Number: 1711187

This signed Certificate of Analysis is our approved release of your analytical results. These results are only representative of sample aliquots received at the laboratory. ESS Laboratory expects its clients to follow all regulatory sampling guidelines. Beginning with this page, the entire report has been paginated. This report should not be copied except in full without the approval of the laboratory. Samples will be disposed of thirty days after the final report has been delivered. If you have any questions or concerns, please feel free to call our Customer Service Department.

Laurel Stoddard Laboratory Director REVIEWED

By ESS Laboratory at 4:40 pm, Nov 14, 2017

Analytical Summary

The project as described above has been analyzed in accordance with the ESS Quality Assurance Plan. This plan utilizes the following methodologies: US EPA SW-846, US EPA Methods for Chemical Analysis of Water and Wastes per 40 CFR Part 136, APHA Standard Methods for the Examination of Water and Wastewater, American Society for Testing and Materials (ASTM), and other recognized methodologies. The analyses with these noted observations are in conformance to the Quality Assurance Plan. In chromatographic analysis, manual integration is frequently used instead of automated integration because it produces more accurate results.

The test results present in this report are in compliance with TNI and relative state standards, and/or client Quality Assurance Project Plans (QAPP). The laboratory has reviewed the following: Sample Preservations, Hold Times, Initial Calibrations, Continuing Calibrations, Method Blanks, Blank Spikes, Blank Spike Duplicates, Duplicates, Matrix Spikes, Matrix Spike Duplicates, Surrogates and Internal Standards. Any results which were found to be outside of the recommended ranges stated in our SOPs will be noted in the Project Narrative.

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: Exeter Landfill ESS Laboratory Work Order: 1711187

SAMPLE RECEIPT

The following samples were received on November 07, 2017 for the analyses specified on the enclosed Chain of Custody Record.

Lab Number 1711187-01

Sample Name Weir-1 Matrix Surface Water **Analysis** 6010C, 7010

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: Exeter Landfill ESS Laboratory Work Order: 1711187

PROJECT NARRATIVE

No unusual observations noted.

End of Project Narrative.

DATA USABILITY LINKS

To ensure you are viewing the most current version of the documents below, please clear your internet cookies for www.ESSLaboratory.com. Consult your IT Support personnel for information on how to clear your internet cookies.

Definitions of Quality Control Parameters

Semivolatile Organics Internal Standard Information

Semivolatile Organics Surrogate Information

Volatile Organics Internal Standard Information

Volatile Organics Surrogate Information

EPH and VPH Alkane Lists

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: Exeter Landfill ESS Laboratory Work Order: 1711187

CURRENT SW-846 METHODOLOGY VERSIONS

Analytical Methods

1010A - Flashpoint

6010C - ICP

6020A - ICP MS

7010 - Graphite Furnace

7196A - Hexavalent Chromium

7470A - Aqueous Mercury

7471B - Solid Mercury

8011 - EDB/DBCP/TCP

8015C - GRO/DRO

8081B - Pesticides

8082A - PCB

8100M - TPH

8151A - Herbicides

8260B - VOA

8270D - SVOA

8270D SIM - SVOA Low Level

9014 - Cyanide

9038 - Sulfate

9040C - Aqueous pH

9045D - Solid pH (Corrosivity)

9050A - Specific Conductance

9056A - Anions (IC)

9060A - TOC

9095B - Paint Filter

MADEP 04-1.1 - EPH / VPH

Prep Methods

3005A - Aqueous ICP Digestion

3020A - Aqueous Graphite Furnace / ICP MS Digestion

3050B - Solid ICP / Graphite Furnace / ICP MS Digestion

3060A - Solid Hexavalent Chromium Digestion

3510C - Separatory Funnel Extraction

3520C - Liquid / Liquid Extraction

3540C - Manual Soxhlet Extraction

3541 - Automated Soxhlet Extraction

3546 - Microwave Extraction

3580A - Waste Dilution

5030B - Aqueous Purge and Trap

5030C - Aqueous Purge and Trap

5035 - Solid Purge and Trap

SW846 Reactivity Methods 7.3.3.2 (Reactive Cyanide) and 7.3.4.1 (Reactive Sulfide) have been withdrawn by EPA. These methods are reported per client request and are not NELAP accredited.

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: Exeter Landfill

Client Sample ID: Weir-1 Date Sampled: 11/06/17 08:30

Percent Solids: N/A

ESS Laboratory Work Order: 1711187 ESS Laboratory Sample ID: 1711187-01

Sample Matrix: Surface Water

Units: ug/L

Extraction Method: 200.7/6010BNoDigest

Dissolved Metals

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyst	Analyzed	<u>I/V</u>	F/V	Batch
Arsenic	ND (5.0)		7010		1	KJK	11/09/17 0:34	10	10	CK70803
Iron	ND (100)		6010C		1	KJK	11/08/17 14:33	10	10	CK70803
Manganese	1210 (20.0)		6010C		1	KJK	11/08/17 14:33	10	10	CK70803

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: Exeter Landfill

Client Sample ID: Weir-1 Date Sampled: 11/06/17 08:30

Percent Solids: N/A

ESS Laboratory Work Order: 1711187 ESS Laboratory Sample ID: 1711187-01

Sample Matrix: Surface Water

Units: ug/L

Extraction Method: 3005A/200.7

Total Metals

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyst	Analyzed	<u>I/V</u>	F/V	Batch
Arsenic	4.4 (0.5)		7010		1	KJK	11/09/17 17:40	100	10	CK70726
Iron	375 (10.0)		6010C		1	KJK	11/08/17 20:52	100	10	CK70726
Manganese	1400 (2.0)		6010C		1	KJK	11/08/17 20:52	100	10	CK70726

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: Exeter Landfill ESS Laboratory Work Order: 1711187

Quality Control Data

Quality Collition Data										
				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifie
		ı	Dissolved M	etals						
Batch CK70803 - 200.7/6010BNoDigest										
Blank										
Arsenic	ND	5.0	ug/L							
ron	ND	100	ug/L							
Manganese	ND	20.0	ug/L							
Blank										
Arsenic	ND	5.0	ug/L							
ron	ND	100	ug/L							
Manganese	ND	20.0	ug/L							
cs										
ron	2.4		mg/L	2.500		95	80-120			
Manganese	0.5		mg/L	0.5000		98	80-120			
cs										
rsenic	25.4		ug/L	25.00		102	80-120			
			Total Met	als						
Batch CK70726 - 3005A/200.7										
Blank										
Arsenic	ND	0.5	ug/L							
ron	ND	10.0	ug/L							
Manganese	ND	2.0	ug/L							
.cs										
Arsenic	46.3	12.5	ug/L	50.00		93	80-120			
ron	228	10.0	ug/L	250.0		91	80-120			
Manganese	50.6	2.0	ug/L	50.00		101	80-120			
.CS Dup										
Arsenic	48.2	12.5	ug/L	50.00	<u></u>	96	80-120	4	20	<u></u>
Iron	225	10.0	ug/L	250.0		90	80-120	1	20	

49.8

Manganese

2.0

ug/L

50.00

100

80-120

20

Analyte included in the analysis, but not detected

BAL Laboratory

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: Exeter Landfill ESS Laboratory Work Order: 1711187

Notes and Definitions

D	Diluted.
ND	Analyte NOT DETECTED at or above the MRL (LOQ), LOD for DoD Reports, MDL for J-Flagged Analytes

dry Sample results reported on a dry weight basis

Relative Percent Difference RPD MDL Method Detection Limit MRL Method Reporting Limit LOD Limit of Detection Limit of Quantitation LOQ **Detection Limit** DL Initial Volume I/V F/V Final Volume

U

Subcontracted analysis; see attached report

1 Range result excludes concentrations of surrogates and/or internal standards eluting in that range.

2 Range result excludes concentrations of target analytes eluting in that range. 3 Range result excludes the concentration of the C9-C10 aromatic range.

Avg Results reported as a mathematical average.

NR No Recovery

[CALC] Calculated Analyte

SUB Subcontracted analysis; see attached report

RL Reporting Limit

EDL Estimated Detection Limit

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: Exeter Landfill ESS Laboratory Work Order: 1711187

ESS LABORATORY CERTIFICATIONS AND ACCREDITATIONS

ENVIRONMENTAL

Rhode Island Potable and Non Potable Water: LAI00179 http://www.health.ri.gov/find/labs/analytical/ESS.pdf

Connecticut Potable and Non Potable Water, Solid and Hazardous Waste: PH-0750 http://www.ct.gov/dph/lib/dph/environmental_health/environmental_laboratories/pdf/OutofStateCommercialLaboratories.pdf

Maine Potable and Non Potable Water, and Solid and Hazardous Waste: RI00002 http://www.maine.gov/dhhs/mecdc/environmental-health/dwp/partners/labCert.shtml

Massachusetts Potable and Non Potable Water: M-RI002 http://public.dep.state.ma.us/Labcert/Labcert.aspx

New Hampshire (NELAP accredited) Potable and Non Potable Water, Solid and Hazardous Waste: 2424 http://des.nh.gov/organization/divisions/water/dwgb/nhelap/index.htm

New York (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: 11313 http://www.wadsworth.org/labcert/elap/comm.html

New Jersey (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: RI006 http://datamine2.state.nj.us/DEP_OPRA/OpraMain/pi_main?mode=pi_by_site&sort_order=PI_NAMEA&Select+a+Site:=58715

United States Department of Agriculture Soil Permit: P330-12-00139

Pennsylvania: 68-01752 http://www.dep.pa.gov/Business/OtherPrograms/Labs/Pages/Laboratory-Accreditation-Program.aspx

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-718

Fax: 401-461-4486

ESS Laboratory Sample and Cooler Receipt Checklist

Client: _	GZ	'A - Bedford,	NH - GZA/	DS			ject ID:		_
Shipped/De	livered Via:	E	ESS Courie	r		Project Du	ceived: e Date: Project:	11/7/2017 11/14/2017 5 Day	
1. Air bill ma Air No.:	anifest prese			No .		6. Does COC ma	atch bottles?		Yes
2. Were cus	stody seals p	resent?		No		7. Is COC compl	lete and correct?	?	Yes
3. Is radiation	on count <10	00 CPM?		Yes		8. Were samples	s received intact	?	Yes
4. Is a Cook		Iced with:	Ice	Yes		9. Were labs in	formed about <u>s</u>	hort holds & rushes?	Yes / No (NA
5. Was CO				Yes			nalyses received	outside of hold time?	Yes (No')
11. Any Sub ESS S	Sample IDs: Analysis:			No		12. Were VOAs a. Air bubbles ir b. Does methan	received?	5?	Yes / No Yes / No Yes / No / NA
13. Are the a. If metals b. Low Level	preserved until VOA vials	frozen:	ved?	Yes / No Date: Date:		Time:		By: By:	<u></u>
	e a need to	o contact Pro contact the c	lient?	_	Yes (No Yes / No	Time:		Ву:	
Sample Number	Container ID	Proper Container	Air Bubbles Present	Sufficient Volume	Containe	ег Туре	Preservative		yanide and 608 cides)
01 01	179839 179840	Yes Yes	NA NA	Yes Yes	250 mL Po 250 mL Po	-	HNO3 HNO3		
2nd Review Are barcode Completed By:		Orrect contain	ners?		Yesy No Date & Time:	<u>ماطير</u>	1917_		<u>.</u>
Reviewed By: Delivered By:	<u> </u>	2	<u> </u>		Date & Time:	بادارر ادارر	192		
•									

ESS Laboratory				CHAIN OF CUSTODY				ESS Lab # 17/1/87									
Division of Thielsch Engine	eering, Inc.		Turn Time	5-Day R	ush	Reporti	ing										
185 Frances Avenue, Crar			Regulatory State	NH		Limits											
Tel. (401) 461-7181 Fax ((401) 461-448	86		is project for any of the		Elector		Limit Che	· · · · ·		⊠ Standard	Excel					
www.esslaboratory.com	pany Name		OCT RCP	O	ORGP	Deliveral	bles (Other (Ple	ase Specify –	o) edf	<u> </u>						
GLA GEOENVIPO,	n mental	·	Project # 04.0071770.28	Exeter U	ect Name			+									
Dawre Tousie	act Person		5 Comm	ce Park V.		ysis	1, As	₹									
Bed Sand City		S 1/	tate	Zip Code	PO#	Analysis	, Mn,	124									
Telephone Numl	ber 710		Number	daws, tousignon	Address		12/	١ [٧									
	Collection Time	Sample Type	Sample Matrix		Sample ID	'	Tota 1	; } }									
1 11/6/17	0830	G	SW	Weir-1	· · · · · · · · · · · · · · · · · · ·		8						11	\top			
			-							-	1 1 1			_			
										1-1-			++	+			
	•				<u>:</u>								++				
					<u>-</u> ;	<u> </u>		++		 	HH		+-	+			
							 			 -			++	+			
							\vdash	\dashv				- -	++				
													++	\bot			
								11					$\perp \perp$	\perp			
		<u> </u>															
												- } - }	1				
Container Type: /	AC-Air Casset	te AG-Amber Glas	ss B-BOD Bottle (C-Cubitainer G - Glass	O-Other P-Poly S-S	Sterile V-Vial	P	7									
Container Volume: 1						z 11-Other*		۲									
Preservation Code:	1-Non Preserved	1 2-HCl 3-H2SO4	4-HNO3 5-NaOH 6-M	lethanol 7-Na2S2O3 8-ZnA	ce, NaOH 9-NH4CI 10-DI H	120 11-Other*	4 4	f									
					lumber of Containers po	er Sample:											
	Laborator	y Use Only		Sampled by :	Dimess												
Cooler Present:	Yes		•	Comments:	Please	specify "Othe	r" pre	servative	and conta	iners typ	es in this	space					
Seals Intact:	NA			Diss. Medels	field filtered												
Cooler Temperature:		°C ILL te	mP: 1.6														
Relinquished by: (Signature, Date & Time) Received By:				(Signature, Date & Timα	Relinquished I	By: (Signature	e, Date			Received	By: (Signa	iture, Date	& Time)				
En D Sype 11/6	Un 123	<u> </u>	Custedy Sal	Grobe 11/6/17	1235 GZA frid	5219 90 H/#/		11:43	Ju	A K	no Z	- 11/7/	17 11:	43			
Relinquished by: (\$	Signature, Da	ite & Time)	Received By:	(Signature, Date & Time							By: (Signa	iture, Date	& Time)				
Jeney Rug	11/7/1	7 19:00	11/17 1911	;													

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Dawna Tousignant GZA GeoEnvironmental, Inc. 5 Commerce Park North Bedford, NH 03110

RE: Exeter Landfill (04.0021270.28)

ESS Laboratory Work Order Number: 1712242

This signed Certificate of Analysis is our approved release of your analytical results. These results are only representative of sample aliquots received at the laboratory. ESS Laboratory expects its clients to follow all regulatory sampling guidelines. Beginning with this page, the entire report has been paginated. This report should not be copied except in full without the approval of the laboratory. Samples will be disposed of thirty days after the final report has been delivered. If you have any questions or concerns, please feel free to call our Customer Service Department.

Laurel Stoddard

Laboratory Director

REVIEWED

By ESS Laboratory at 5:50 pm, Dec 19, 2017

Analytical Summary

The project as described above has been analyzed in accordance with the ESS Quality Assurance Plan. This plan utilizes the following methodologies: US EPA SW-846, US EPA Methods for Chemical Analysis of Water and Wastes per 40 CFR Part 136, APHA Standard Methods for the Examination of Water and Wastewater, American Society for Testing and Materials (ASTM), and other recognized methodologies. The analyses with these noted observations are in conformance to the Quality Assurance Plan. In chromatographic analysis, manual integration is frequently used instead of automated integration because it produces more accurate results.

The test results present in this report are in compliance with TNI and relative state standards, and/or client Quality Assurance Project Plans (QAPP). The laboratory has reviewed the following: Sample Preservations, Hold Times, Initial Calibrations, Continuing Calibrations, Method Blanks, Blank Spikes, Blank Spike Duplicates, Duplicates, Matrix Spikes, Matrix Spike Duplicates, Surrogates and Internal Standards. Any results which were found to be outside of the recommended ranges stated in our SOPs will be noted in the Project Narrative.

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: Exeter Landfill ESS Laboratory Work Order: 1712242

SAMPLE RECEIPT

The following samples were received on December 11, 2017 for the analyses specified on the enclosed Chain of Custody Record.

Lab Number 1712242-01

Sample Name Weir-1 Matrix Surface Water **Analysis** 6010C, 7010

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: Exeter Landfill ESS Laboratory Work Order: 1712242

PROJECT NARRATIVE

Total Metals

CL71328-BSD1 Relative percent difference for duplicate is outside of criteria (D+).

Iron (22% @ 20%)

No other observations noted.

End of Project Narrative.

DATA USABILITY LINKS

To ensure you are viewing the most current version of the documents below, please clear your internet cookies for www.ESSLaboratory.com. Consult your IT Support personnel for information on how to clear your internet cookies.

Definitions of Quality Control Parameters

Semivolatile Organics Internal Standard Information

Semivolatile Organics Surrogate Information

Volatile Organics Internal Standard Information

Volatile Organics Surrogate Information

EPH and VPH Alkane Lists

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: Exeter Landfill ESS Laboratory Work Order: 1712242

CURRENT SW-846 METHODOLOGY VERSIONS

Analytical Methods

1010A - Flashpoint

6010C - ICP

6020A - ICP MS

7010 - Graphite Furnace

7196A - Hexavalent Chromium

7470A - Aqueous Mercury

7471B - Solid Mercury

8011 - EDB/DBCP/TCP

8015C - GRO/DRO

8081B - Pesticides

8082A - PCB

8100M - TPH

8151A - Herbicides

8260B - VOA

8270D - SVOA

8270D SIM - SVOA Low Level

9014 - Cyanide

9038 - Sulfate

9040C - Aqueous pH

9045D - Solid pH (Corrosivity)

9050A - Specific Conductance

9056A - Anions (IC)

9060A - TOC

9095B - Paint Filter

MADEP 04-1.1 - EPH / VPH

Prep Methods

3005A - Aqueous ICP Digestion

3020A - Aqueous Graphite Furnace / ICP MS Digestion

3050B - Solid ICP / Graphite Furnace / ICP MS Digestion

3060A - Solid Hexavalent Chromium Digestion

3510C - Separatory Funnel Extraction

3520C - Liquid / Liquid Extraction

3540C - Manual Soxhlet Extraction

3541 - Automated Soxhlet Extraction

3546 - Microwave Extraction

3580A - Waste Dilution

5030B - Aqueous Purge and Trap

5030C - Aqueous Purge and Trap

5035 - Solid Purge and Trap

SW846 Reactivity Methods 7.3.3.2 (Reactive Cyanide) and 7.3.4.1 (Reactive Sulfide) have been withdrawn by EPA. These methods are reported per client request and are not NELAP accredited.

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: Exeter Landfill

Client Sample ID: Weir-1 Date Sampled: 12/08/17 09:35

Percent Solids: N/A

ESS Laboratory Work Order: 1712242 ESS Laboratory Sample ID: 1712242-01

Sample Matrix: Surface Water

Units: ug/L

Extraction Method: 200.7/6010BNoDigest

Dissolved Metals

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyst	Analyzed	<u>I/V</u>	F/V	Batch
Arsenic	ND (5.0)		7010		1	KJK	12/13/17 17:29	10	10	CL71243
Iron	325 (100)		6010C		1	KJK	12/19/17 13:08	10	10	CL71243
Manganese	1360 (20.0)		6010C		1	BJV	12/18/17 12:56	10	10	CL71243

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: Exeter Landfill

Client Sample ID: Weir-1 Date Sampled: 12/08/17 09:35

Percent Solids: N/A

ESS Laboratory Work Order: 1712242 ESS Laboratory Sample ID: 1712242-01

Sample Matrix: Surface Water

Units: ug/L

Extraction Method: 3005A/200.7

Total Metals

Analyte	Results (MRL)	MDL Metho	od <u>Limit</u> <u>D</u>	F Analys	t Analyzed	<u>I/V</u>	F/V	Batch
Arsenic	2.8 (0.5)	7010	1	KJK	12/15/17 1:43	100	10	CL71328
Iron	180 (20.0)	6010C	2	2 KJK	12/16/17 3:05	100	10	CL71328
Manganese	1230 (2.0)	6010C	;	KJK	12/15/17 1:56	100	10	CL71328

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Arsenic

Manganese

Iron

Client Project ID: Exeter Landfill ESS Laboratory Work Order: 1712242

Quality Control Data

		•	•							
				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
			Dissolved M	etals						
Batch CL71243 - 200.7/6010BNoDigest										
Blank										
Arsenic	ND	5.0	ug/L							
Iron	ND	100	ug/L							
Manganese	ND	20.0	ug/L							
LCS										
Iron	2.5		mg/L	2.500		101	80-120			
Manganese	0.5		mg/L	0.5000		100	80-120			
LCS										
Arsenic	25.8		ug/L	25.00		103	80-120			
			Total Met	als						
Batch CL71328 - 3005A/200.7										
Blank										
Arsenic	ND	0.5	ug/L							
Iron	ND	10.0	ug/L							
Manganese	ND	2.0	ug/L							
LCS										
Arsenic	50.8	12.5	ug/L	50.00		102	80-120			
Iron	256	10.0	ug/L	250.0		102	80-120			
Manganese	42.3	2.0	ug/L	50.00		85	80-120			
LCS Dup										

50.00

250.0

50.00

ug/L

ug/L

ug/L

46.7

206

51.3

12.5

10.0

2.0

80-120

80-120

80-120

8

22

19

93

82

103

20

20

20

D+

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: Exeter Landfill ESS Laboratory Work Order: 1712242

Notes and Definitions

U	Analyte included	in the analysis,	but not detected
---	------------------	------------------	------------------

D+ Relative percent difference for duplicate is outside of criteria (D+).

D Diluted.

ND Analyte NOT DETECTED at or above the MRL (LOQ), LOD for DoD Reports, MDL for J-Flagged Analytes

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference
MDL Method Detection Limit
MRL Method Reporting Limit
LOD Limit of Detection
LOQ Limit of Quantitation
DL Detection Limit
I/V Initial Volume

F/V Final Volume

Subcontracted analysis; see attached report

1 Range result excludes concentrations of surrogates and/or internal standards eluting in that range.

2 Range result excludes concentrations of target analytes eluting in that range.
3 Range result excludes the concentration of the C9-C10 aromatic range.

Avg Results reported as a mathematical average.

NR No Recovery

[CALC] Calculated Analyte

SUB Subcontracted analysis; see attached report

RL Reporting Limit

EDL Estimated Detection Limit

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: Exeter Landfill ESS Laboratory Work Order: 1712242

ESS LABORATORY CERTIFICATIONS AND ACCREDITATIONS

ENVIRONMENTAL

Rhode Island Potable and Non Potable Water: LAI00179 http://www.health.ri.gov/find/labs/analytical/ESS.pdf

Connecticut Potable and Non Potable Water, Solid and Hazardous Waste: PH-0750 http://www.ct.gov/dph/lib/dph/environmental health/environmental laboratories/pdf/OutofStateCommercialLaboratories.pdf

> Maine Potable and Non Potable Water, and Solid and Hazardous Waste: RI00002 http://www.maine.gov/dhhs/mecdc/environmental-health/dwp/partners/labCert.shtml

> > Massachusetts Potable and Non Potable Water: M-RI002 http://public.dep.state.ma.us/Labcert/Labcert.aspx

New Hampshire (NELAP accredited) Potable and Non Potable Water, Solid and Hazardous Waste: 2424 http://des.nh.gov/organization/divisions/water/dwgb/nhelap/index.htm

New York (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: 11313 http://www.wadsworth.org/labcert/elap/comm.html

New Jersey (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: RI006 http://datamine2.state.nj.us/DEP_OPRA/OpraMain/pi_main?mode=pi_by_site&sort_order=PI_NAMEA&Select+a+Site:=58715

United States Department of Agriculture Soil Permit: P330-12-00139

Pennsylvania: 68-01752 http://www.dep.pa.gov/Business/OtherPrograms/Labs/Pages/Laboratory-Accreditation-Program.aspx

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

ESS Laboratory Sample and Cooler Receipt Checklist

Client: GZA - Bedford, NH - GZA/DS Shipped/Delivered Viz: FSS Couries	ESS Project ID: 1712242 Date Received: 12/11/2017	
Shipped/Delivered Via: ESS Courier	Project Due Date: 12/18/2017 Days for Project: 5 Day	
1. Air bill manifest present? No NA NA	6. Does COC match bottles?	Yes
2. Were custody seals present? Yes	7. Is COC complete and correct?	Yes
3. Is radiation count <100 CPM? Yes	8. Were samples received intact?	Yes
4. Is a Cooler Present? Yes Temp: 1.9 Iced with: Ice	9. Were labs informed about short holds & rushes?	Yes / No (NA
5. Was COC signed and dated by client? Yes	10. Were any analyses received outside of hold time?	res No
11. Any Subcontracting needed? ESS Sample IDs: Analysis: TAT:	12. Were VOAs received? a. Air bubbles in aqueous VOAs? b. Does methanol cover soil completely?	Yes No Yes / No / NA
13. Are the samples properly preserved? a. If metals preserved upon receipt: b. Low Level VOA vials frozen: Yes / No Date: Date:	Time: By: Time: By:	
Sample Receiving Notes:		
Was there a need to contact Project Manager? a. Was there a need to contact the client? Who was contacted? Date:	Yes No Yes No Time: By:	
Sample Container Proper Air Bubbles Sufficient Number ID Container Present Volume	Container Type Preservative Record pH (Cyanide Pesticides)	and 608
01 189671 Yes NA Yes 01 189672 Yes NA Yes	250 mL Poly - HNO3 HNO3 250 mL Poly - HNO3 HNO3	
2nd Review Are barcode labels on correct containers?	(Yes)No	
Completed By:	Date & Time: 12/11/17 1655	
Reviewed	Date & Time: 12 11 17 183Z	
Delivered By:	12/11/17 1832	

					HAIN OF CUSTOD	Υ	ESS Lab#						-	····				
Division of	Thielsch Eng	ineering, Inc.		Turn Time	5-Day Rush	`	Reporti	na .				0 47	<u> </u>					\dashv
		anston RI 029		Regulatory State	NH		Limits	-										
		x (401) 461-44	86	ls th	s project for any of the follow		Electon		_	t Checker			Østa	ndard Exc	:el			\neg
www.essla	boratory.com	mpany Name		OCT RCP			Deliverab	oles	⊠ Oth	er (Please	Specify →) Pd	\$					
GZA	GeoEn	ntact Person,	for	Project # 04.00 Z 270. Z \$	Exeter CF	1e		2					1 1	İ				
Dav	una lous	ntact Person, Signant	-	5 Com	nerce Park N		sis	Metals	3/2									
	City /	 :		ate	Zip Code	PO #	Analysis	X	2		İ							
T	elephone Nu	mber		lumber	, Email Addre	ss	, ,	3								- 1	1	
	03-23				dawne tousignent	Ogza, com		sol	1							-		
ESS Lab	Collection Date	Collection Time	Sample Type	Sample Matrix	Samı	ole ID		Dissolved	1 apa		İ							
	12/8/17	0935	G	SW	Weir-1				Ø							+	† †	٦
														-		+	 	ᅱ
										1-1	_		1 1	+	 	+-	 - -	\dashv
					<u> </u>				-	+-			+		 	+	-	\dashv
										-	_	 -	+ +		\vdash	+	++	\dashv
					· · · · · · · · · · · · · · · · · · ·					+			-		$\vdash \vdash$	+	-	긕
									-		_		1-1					4
													\perp			<u> </u>		╛
						·		_										
_	···				·		-		_					ļ				
							_											٦
			te AG-Amber Glas			er P-Poly S-Steri		P	P							\dashv	 	ᅦ
	iner Volume:		-2.5 gal 3-250 mL					3	3									╗
Preser	vation Code:	1-Non Preserved	1 2-HC1 3-H2SO4 4	L-HNO3 5-NaOH 6-M		9-NH4CI 10-DI H2O		4	4									\Box
		1 -1	-11 0-1		Number	of Containers per S	sample:	/	/									
۰.	. .	Laboratory	y Use Only		Sampled by: E. Dyn	ness M. T	<u>Serge n</u>	<u> </u>										
	Present:	Y65			Sampled by: E. Dyn Comments: Metalc = Tron	Please spe	cify "Other	r" pre	eserva	ative and	d contai	iners ty _l	pes in 1	his spa	ce			i
	s Intact:	100		^	Metals = Iron	Arsenic, M	langane	252	2									1
	emperature:		°C ice temi	o : 1.4			_											
Relinquished by: (Signature, Date & Time) Received By: (Signature, Date & Time)	Relinquished By:	(Signature,	Date	& Tin	ne)	F	Receive	d By: (S	ignatur	e, Date	& Tim	e)	٦
Enk Dyn 12/8/17 1220 Custody Sed				d Fordge 12/8/1720	-ZAfridge	18/11/17		1:03	3	Tue	امرس	hee		12/11/	17 /	11:23		
Re	linquished by:	(Signature, Da	ite & Time)		Signature, Date & Time)	Relinquished By:	(Signature,	Date				Receive	d By: (S					ヿ
Lu	uxpr	W 12/	11/17 17:59	XIW	2 12/11/17/82/													
				1 '	•													

Limitations

April 2012

USE OF REPORT

1. GZA GeoEnvironmental, Inc. (GZA) prepared this report on behalf of, and for the exclusive use of our Client for the stated purpose(s) and location(s) identified in the Proposal for Services and/or Report. Use of this report, in whole or in part, at other locations, or for other purposes, may lead to inappropriate conclusions; and we do not accept any responsibility for the consequences of such use(s). Further, reliance by any party not expressly identified in the agreement, for any use, without our prior written permission, shall be at that party's sole risk, and without any liability to GZA.

STANDARD OF CARE

- 2. GZA's findings and conclusions are based on the work conducted as part of the Scope of Services set forth in the Proposal for Services and/or Report and reflect our professional judgment. These findings and conclusions must be considered not as scientific or engineering certainties, but rather as our professional opinions concerning the limited data gathered during the course of our work. Conditions other than described in this report may be found at the subject location(s).
- 3. GZA's services were performed using the degree of skill and care ordinarily exercised by qualified professionals performing the same type of services, at the same time, under similar conditions, at the same or a similar property. No warranty, expressed or implied, is made. Specifically, GZA does not and cannot represent that the Site contains no hazardous material, oil, or other latent condition beyond that observed by GZA during its study. Additionally, GZA makes no warranty that any response action or recommended action will achieve all of its objectives or that the findings of this study will be upheld by a local, state or federal agency.
- 4. In conducting our work, GZA relied upon certain information made available by public agencies, Client and/or others. GZA did not attempt to independently verify the accuracy or completeness of that information. Inconsistencies in this information which we have noted, if any, are discussed in the Report.

SUBSURFACE CONDITIONS

- 5. The generalized soil profile(s) provided in our Report are based on widely-spaced subsurface explorations and are intended only to convey trends in subsurface conditions. The boundaries between strata are approximate and idealized, and were based on our assessment of subsurface conditions. The composition of strata, and the transitions between strata, may be more variable and more complex than indicated. For more specific information on soil conditions at a specific location refer to the exploration logs. The nature and extent of variations between these explorations may not become evident until further exploration or construction. If variations or other latent conditions then become evident, it will be necessary to reevaluate the conclusions and recommendations of this report.
- 6. Water level readings have been made, as described in this Report, in and monitoring wells at the specified times and under the stated conditions. These data have been reviewed and interpretations have been made in this report. Fluctuations in the level of the groundwater however occur due to temporal or spatial variations in areal recharge rates, soil heterogeneities, the presence of subsurface utilities, and/or natural or artificially induced perturbations. The observed water table may be other than indicated in the Report.

COMPLIANCE WITH CODES AND REGULATIONS

7. We used reasonable care in identifying and interpreting applicable codes and regulations necessary to execute our scope of work. These codes and regulations are subject to various, and possibly contradictory, interpretations. Interpretations and compliance with codes and regulations by other parties is beyond our control.

SCREENING AND ANALYTICAL TESTING

- 8. GZA collected environmental samples at the locations identified in the Report. These samples were analyzed for the specific parameters identified in the report. Additional constituents, for which analyses were not conducted, may be present in soil, groundwater, surface water, sediment and/or air. Future Site activities and uses may result in a requirement for additional testing.
- 9. Our interpretation of field screening and laboratory data is presented in the Report. Unless otherwise noted, we relied upon the laboratory's QA/QC program to validate these data.
- 10. Variations in the types and concentrations of contaminants observed at a given location or time may occur due to release mechanisms, disposal practices, changes in flow paths, and/or the influence of various physical, chemical, biological or radiological processes. Subsequently observed concentrations may be other than indicated in the Report.

INTERPRETATION OF DATA

11. Our opinions are based on available information as described in the Report, and on our professional judgment. Additional observations made over time, and/or space, may not support the opinions provided in the Report.

ADDITIONAL INFORMATION

12. In the event that the Client or others authorized to use this report obtain additional information on environmental or hazardous waste issues at the Site not contained in this report, such information shall be brought to GZA's attention forthwith. GZA will evaluate such information and, on the basis of this evaluation, may modify the conclusions stated in this report.

ADDITIONAL SERVICES

13. GZA recommends that we be retained to provide services during any future investigations, design, implementation activities, construction, and/or property development/ redevelopment at the Site. This will allow us the opportunity to: i) observe conditions and compliance with our design concepts and opinions; ii) allow for changes in the event that conditions are other than anticipated; iii) provide modifications to our design; and iv) assess the consequences of changes in technologies and/or regulations.

CONCEPTUAL SITE MODEL

14. Our opinions were developed, in part, based upon a comparison of site data to conditions anticipated within our Conceptual Site Model (CSM). The CSM is based on available information, and professional judgment. There are rarely sufficient data to develop a unique CSM. Therefore observations over time, and/or space, may vary from those depicted in the CSM provided in this report. In addition, the CSM should be evaluated and refined (as appropriate) whenever significant new information and/or data is obtained.