

Project Funding

- NHDES & NOAA New Hampshire Coastal Program Coastal Resilience Grant
- NHDES Clean Water State Revolving Fund Planning Grant (ARPA Funds)

"This project was funded, in part, by NOAA's Office for Coastal Management under the Coastal Zone Management Act in conjunction with the New Hampshire Department of Environmental Services Coastal Program."

Competing Issues and Priorities

Water Quality

Fisheries

Water Supply

Cost

Maintenance

Industry

Historic

Structures

Feasibility Study Scope

	Faces I What Charles Comme	Funding
	Feasability Study Scope	Source
Task 1 - D	ata Collection	
1.1	Collect and Review Available Data	
1.2	Supplemental Dam/Topo Survey	
1.3	Project Area Bathymetric Survey	
1.4	Impoundment Bathymetry	
1.5	Existing Conditions Plan	
1.6	Impoundment Probing	
1.7	Dam Inspection & Assessment	
Task 2 - A	ternatives Identification and Conceptual Design	
2.1	Alternatives Development	
2.2	Cost Evaluations	
2.3	Alternative Conceptual Sketches	
2.4	Alternatives Screening	
Task 3 - Se	ediment Sampling	
3.1	Sediment Sampling Plan	
3.2	Sediment Evaluation	
3.3	Sediment Transport Potential	
Task 4 - H	ydrologic and Hydraulics Analysis	
4.1	Hydrologic Study - Climate Change Evaluation	
4.2	Hydraulic Study	
4.3	Scour Analysis	
4.4	FEMA Floodplain Analysis	
Task 5 - Cı	ultural Resources	
5.1	Request for Project Review	
5.2	Additional Cultural Resource Studies	

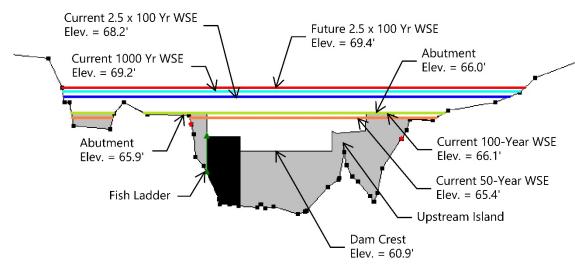
	Feasability Study Scope	Funding
		Source
Task 6 - Impa	act Analysis	
6.1	Rare Species	
6.2	Fish Passage	
6.3	Wetland Impact Analysis	
6.4	Recreational Usage	
6.5	Invasive Species	
6.6	Riverine Ice Coordination	
6.7	Water Supplies	
6.8	Water Quality	
6.9	Infrastructure	
6.10	Visual Simulations	
Task 7 - Feas	ibility and Impact Analysis Report	
7.1	Draft Report	
7.1	Final Report	
7.2	Alternatives Summary Table	
7.3	Progress Reports	
Task 8 - Proje	ect Management and Coordination Meetings	
8.1	Project Management	
8.2	Project Team Meetings	
8.3	Project Partner Meetings	
8.4	Resource Agency Meetings	
8.5	Public Information Meetings	
8.6.	Grant Coordination	

Coastal Resilience Grant
Stormwater Planning Grant - Clean Water State Revolving Fund

Hydrologic Analysis

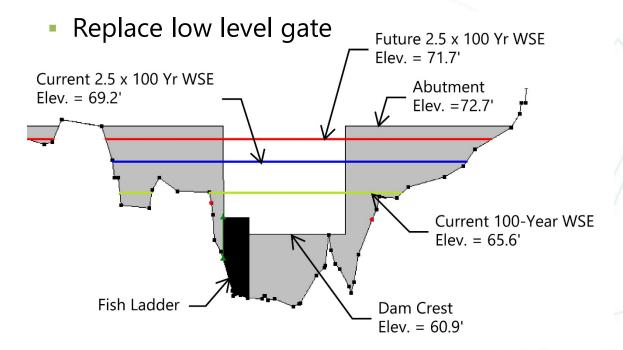
- Current Day Design Flood 2.5 x 100 Year
- Future Rainfall
 - New Hampshire Coastal Flood Risk Summary
 - 15% Increase on best available rainfall data
 - 49% Increase of Design Flood
- NHDES rulemaking for Env Wr 100-700
 - 1000 Year 13,900 cfs

Design Event	Flow(cfs)
Current Normal Flow	136
Current 2-year	504
Current 50-Year	3,030
Current 100-Year	3,980
Current 2.5 x 100-Year	9,940
Current 1,000-Year	13,900
Future 100-Year	5,940
Future 2.5 x 100-Year	14,900



Existing Conditions

- Existing Abutment Elevation: 66.0
- Current dam consists of a spillway, earthen abutments, low level gate, fish weir and ladder
- Portion of existing crest is obstructed by a sediment island
- Low level gate inoperable
- Inspection = Fair Condition
- Does not pass design storm events, without manual operation with 1-foot of freeboard

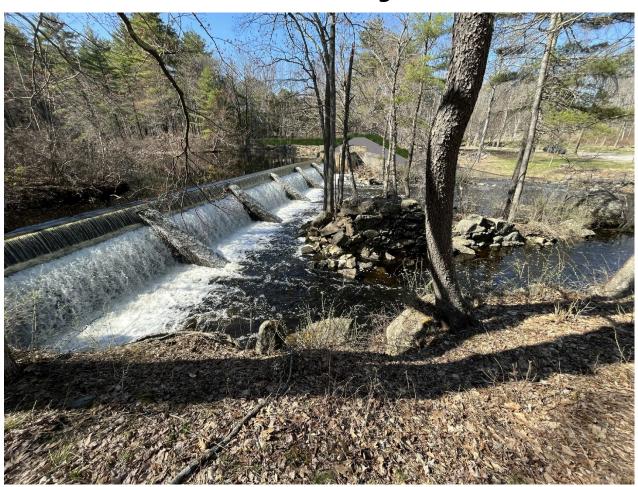


Alternative 1 – Raise Top of Dam

- Maintain existing spillway discharge structure
- Raise top of dam to contain design storm with 1' of freeboard
- Left & right training walls extended
- Raise and extend earthen embankments

Existing Rendering

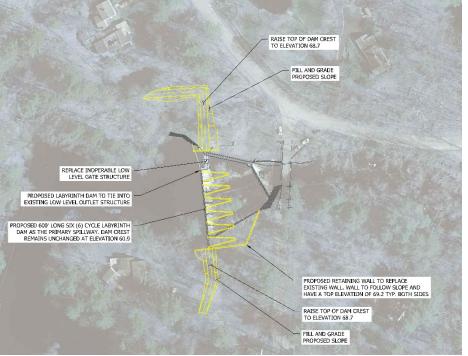
A view of Pickpocket Dam, looking upstream



A view of Pickpocket Dam with Alternative 1, looking upstream

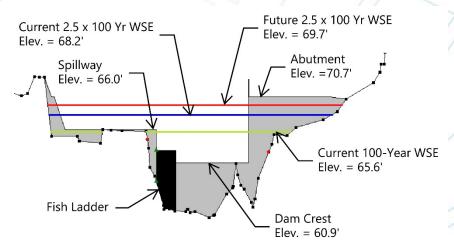
Existing Rendering

An Oblique view of Pickpocket Dam primary spillway, looking from the right bank


An Oblique view of Pickpocket Dam with Alternative 1, looking from the right bank

Alternative 2 – Spillway Replacement

- Replace spillway with labyrinth spillway
- Increase height of left training wall
- Raise and extend earthen embankments


Design Storm	Peak Water Surface Elevation (ft)	Required Top of Dam Elevation (ft)
Current Dam (Current Rainfall)	68.2	66.0 (Ex. Top of Dam)
2.5 X 100 yr (Current Rainfall)	65.6	66.6
2.5 X 100 yr (Future Rainfall)	67.7	68.7

Alternative 3 – Auxiliary Spillway

- Construct overflow auxiliary spillway through left abutment
 - Construct containment berm
 - Excavate exit channel
- Maintain existing spillway discharge structure
- Increase height of right training wall
- Construct earthen embankments
- Replace low level gate

Alternative 4 – Dam Removal

- Complete demolition and removal of dam, fish ladder, low level gate and associated appurtenances
- Preserve islands downstream of dam
- Reconstruct channel
- Upstream rehabilitation

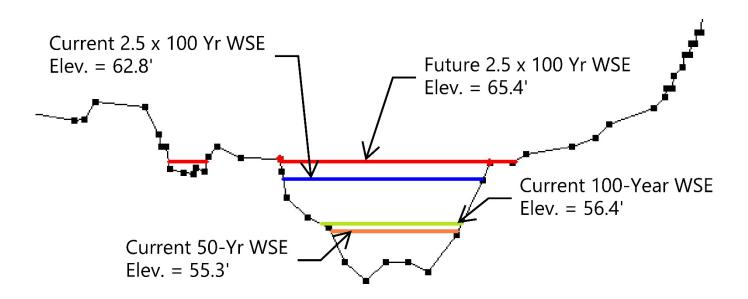
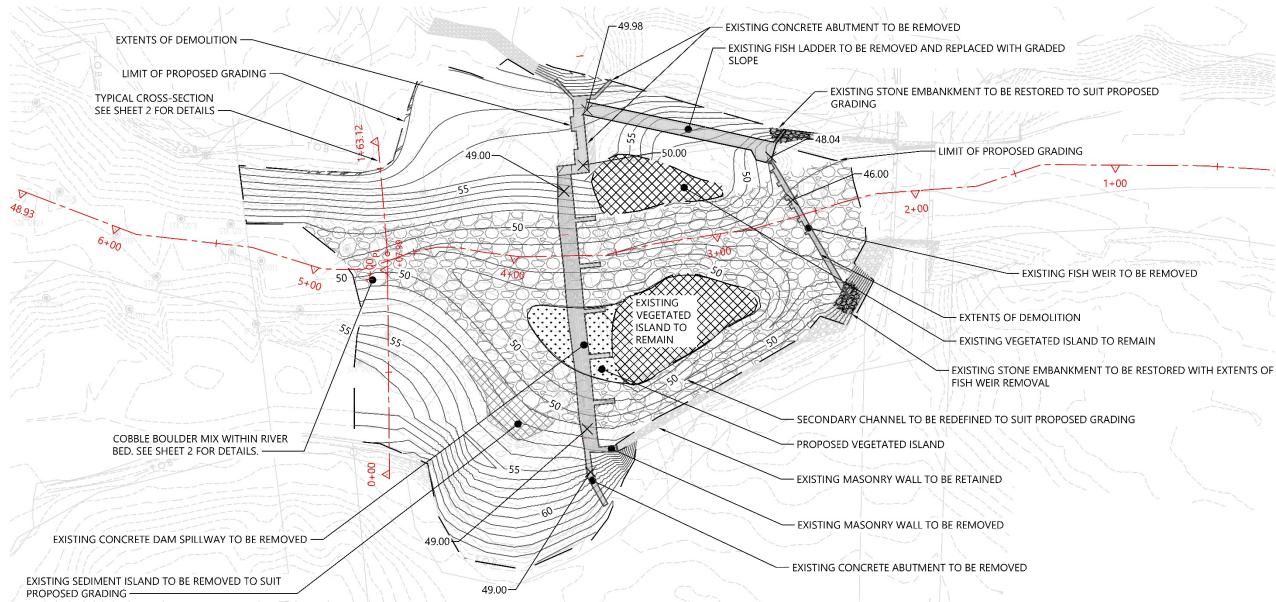
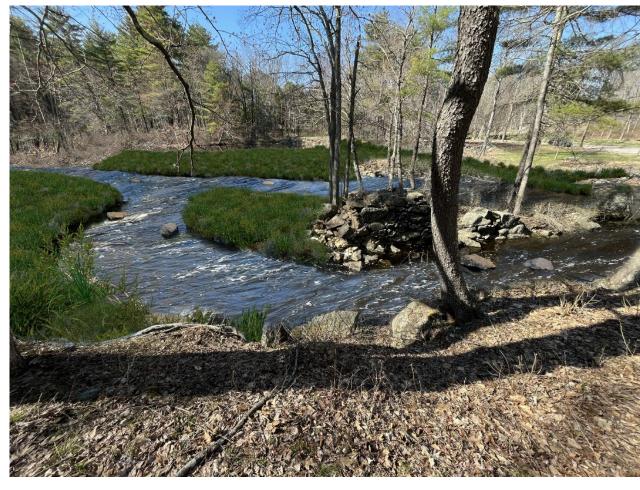



Figure 2.5-1 - Dam Removal Plan

Pickpocket Dam Feasibility Study | Brentwood & Exeter, New Hampshire

Existing Rendering

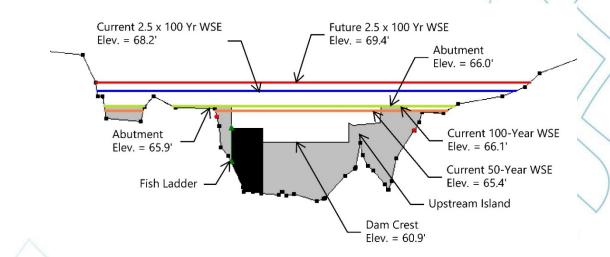
A view of Pickpocket Dam, looking upstream



A view of Pickpocket Dam removed, looking upstream

Existing

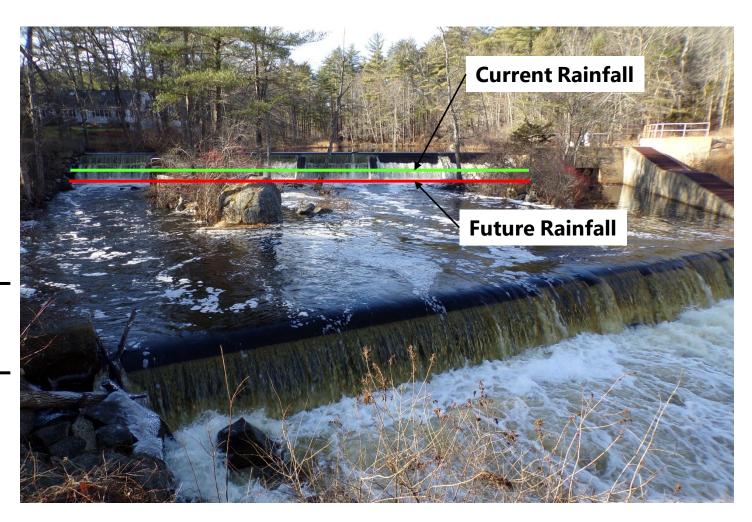
An Oblique view of Pickpocket Dam primary spillway, looking from the right bank


Rendering

An Oblique view of Pickpocket Dam removed, looking from the right bank

Alternative 5 – No Action/Hazard Reduction

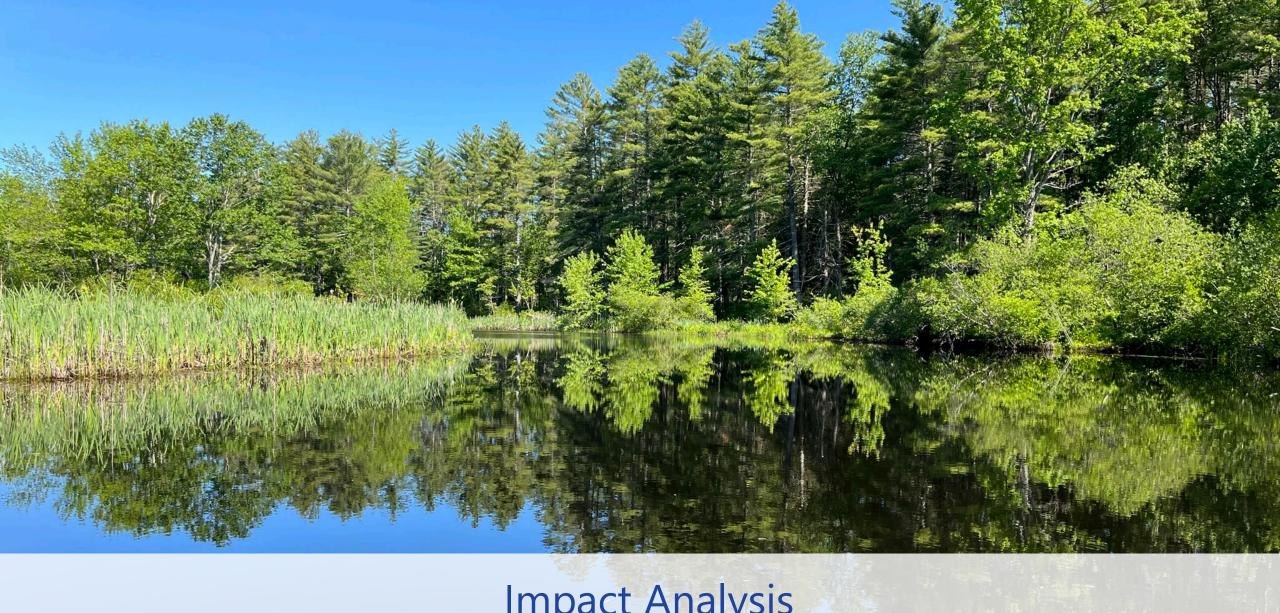
- Probable loss of human life
 - Water levels rising above 1st floor greater than 1 foot
- High Hazard Maintain existing dam
 - In order to reduce hazard classification
 - Purchase impacted residential property (\$544,000)
 - Stabilize manufactured homes (\$80,000)
- Significant Hazard Overtopping of NH Route
 111 (Kingston Rd) Class II roadway
 - Replace Kingston Road Bridge to reduce hazard classification. More expensive than dam modification
 - \$2,024,200 to raise dam 2 feet including life cycle costs
 - \$2,648,200 including property acquisition/stabilization
- Low Hazard Existing dam does not meet lowhazard safety requirements



Hazard Class	Discharge Capacity Flood	Water Surface Elevations (Current/Future)	Freeboard (Current/Future)
Low	50-Yr	65.4/NA	0.6/NA
Significant	100-Yr	66.1/67.0	-0.1/-1.0
High	250% of the 100-Yr	68.2/69.4	-2.2/-3.4

Alternative 6 – Lower Normal Pool

- Selective demolition of the spillway weir
- Replace low-level gate and fish ladder
- Reduced pool levels would have similar impacts as dam removal without the benefits


Design Storm	Spillway Crest Elevation (ft)
Current Spillway	60.9
2.5 X 100 yr (Current Rainfall)	56.5
2.5 X 100 yr (Future Rainfall)	53.9

Alternative Evaluation

- Alternatives Advanced
 - Alternative 1 Raise Dam
 - Alternative 3 Auxiliary Spillway
 - Alternative 4 Remove Dam
- Alternatives Eliminated
 - Alternative 2 Spillway Replacement (Labyrinth)
 - High costs & more difficult to maintain
 - Alternative 5 No Action/Hazard Reduction
 - Hazard reduction does not address the inherent safety concerns
 - Alternative 6 Lower Normal Pool Elevation
 - Negative impacts to environment and recreation

Impact Analysis

Figure 3.2-2: Alternative 1 - Raise Dam 100 Year Water Surface

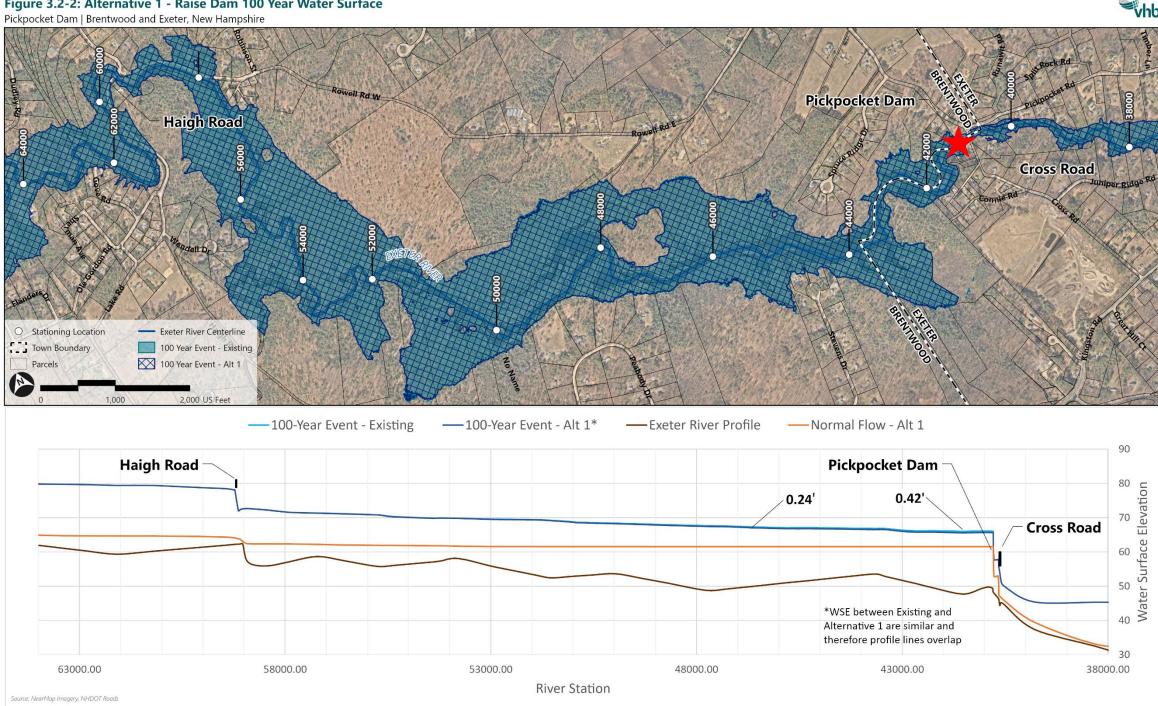


Figure 3.2-5: Alternative 4 - Dam Removal Normal Flow Water Surface

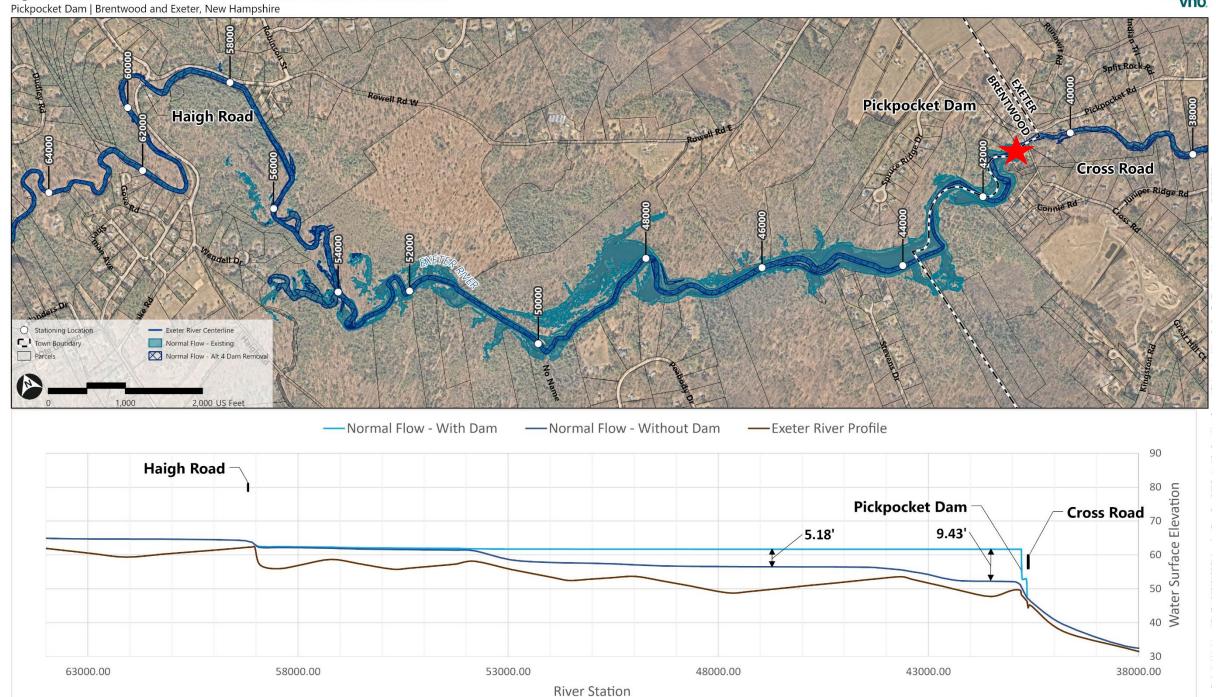
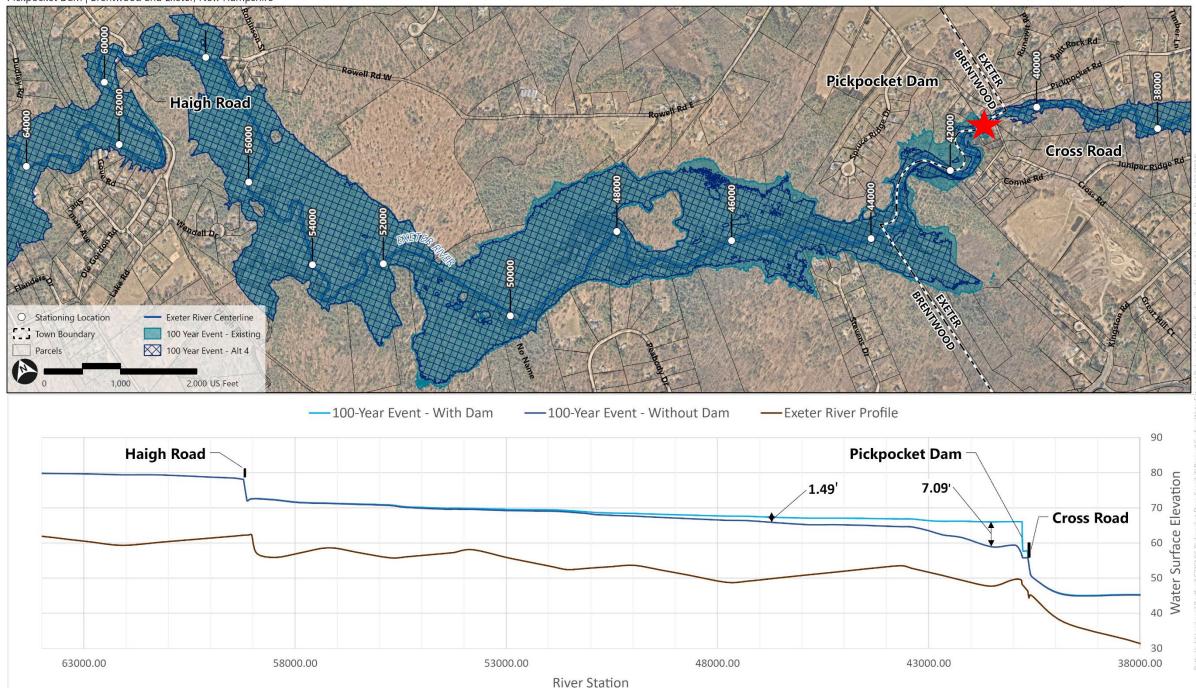



Figure 3.2-6: Alternative 4 - Dam Removal 100 Year Water Surface

Pickpocket Dam | Brentwood and Exeter, New Hampshire

Sediment Sampling Results

- No concentrations of pesticides or PCBs detected in sediment samples
- PAHs and metals detected in all sediment samples
- Arsenic the only contaminant detected in excess of the NHDES EV-600 Soil Remediation Standards

Consistent with background, arsenic is a natural occurring component of sediment

and bedrock in NH

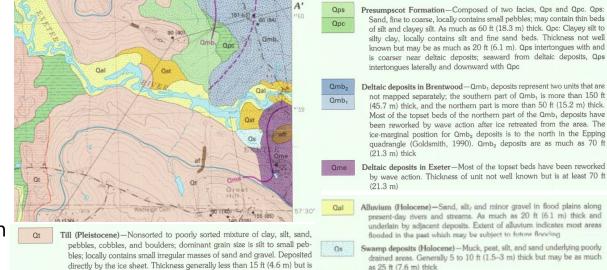
The ecological resource risk for contaminants

- Low Metals and PAHs in SED-1 through SED-5
- Moderate Arsenic in SED-2, SED-4, and SED-5
- Moderate PAHs in SED-3 and SED-4

Town Boundary

Sediment Transport

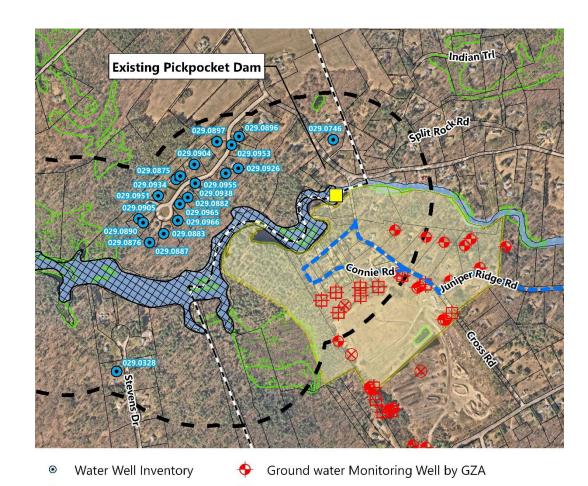
- 3 upstream sediment samples(SED-1, SED-2 & SED-5)
 - Mucky, Fine to very fine sand and silt with trace organic material
- Potential sediment movement 3,700' upstream of dam
- Potential sediment accretion in the Route 108/Court Street Bridge region
- Sediment removed near dam site under Dam Removal
- Controlled drawdown & seeding of exposed banks
- No sediment transport concerns for dam modification


Sediment Probing Results

- Sediment probing investigation
- Depths range 0-2 feet in active conveyance portion of the channel
- Increasing depths towards banks
- Inoperable gate prohibited capturing depths at upstream face

Figure 3.2-9 - Silt Depth Pickpocket Dam Feasibility Study | Brentwood & Exeter, New Hampshire TOWN OF EXETER ANTOINE ALLANORE & MAP 220 LOT 6 BK, 2400, PG, 92 DAPHNE DE BARITAULT CONCRETE DAM w/5 WIDL WOOD SPIL WAYS TOP F EV. 52.0' 101. LLLV.=58.5 51K 12060 Exeter River ROAD ROSS TCP\ ELEV.=66.0°

Infrastructure


- Dam modification: Increase in flood levels during design discharge
- Dam removal:
 - Decreased flood levels
 - No impact to bridges
 - Results show small increase in velocity
 - Potential erosion will be mitigated
 - Induced Settlement
 - River drawdown resulting in groundwater changes
 - Increase effective stress could result in soil compression
 - Potential settlement of relatively loose soil layers
 - River Valley Slope Stability
 - Reduction in water level will increase total effective stresses
 - The unsaturated soil strengths are greater than saturated soil strengths
 - Minor increase in velocity potential to impact slope stability
 - Slope protection evaluated during design phase

as much as 155 ft (47.2 m) under the crests of drumlins

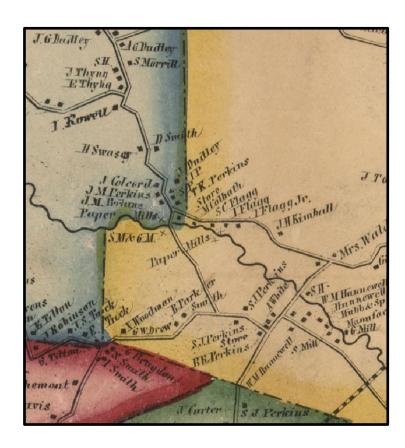
Water Supplies

- Evaluated wells within 1000' buffer
- Impoundment not connected to deep bedrock aquifer
- Drinking water and geothermal wells rely on water from deep bedrock aquifer
 - No wells are installed in overburden aquifer
- Impoundment would drain too quickly to be used as a viable backup source of drinking water supply
- Cross Road Landfill groundwater contamination
 - Dam removal may steepen groundwater hydraulic gradient towards upstream of dam
 - No increase in overall landfill related contaminant loading to Exeter River

Groundwater Monitoring Well

Dry Hydrant

Soil Gas Monitoring Well Location


Public Water Supply Wells

Landfill GMZ Zone

🕶 🕶 Water Main

Cultural Resources

- Various mill operations near Pickpocket Falls since mid-17th century
- Current dam: Construction 1920 and modified with fish ladder in 1969
- NH Division of Historical Resources determined that the Pickpocket Dam is <u>Eligible for Listing</u> on the National Register
- Identified two archaeologically sensitive areas that are sensitive for Pre-Contact Native American cultural deposits; Numerous Post-Contact sites also present
- "Adverse Effects" under both dam modification and removal
- Further review under <u>Section 106</u> of the National Historic Preservation Act

Water Quality

- Class B: Downstream segment <u>Impaired</u> for <u>Aquatic Life</u> designated used due to low <u>DO</u> concentration
- Dam In Conditions Slow moving water result in;
 - Lower dissolved oxygen
 - Disruption to sediment transport process
 - Increased growth of algae & vegetation
 - Increased water temperature
- Dam removal would improve water quality upstream and downstream of dam
 - Improvement in upstream water quality will result in improvement to downstream water quality

Fisheries & Fish Passage

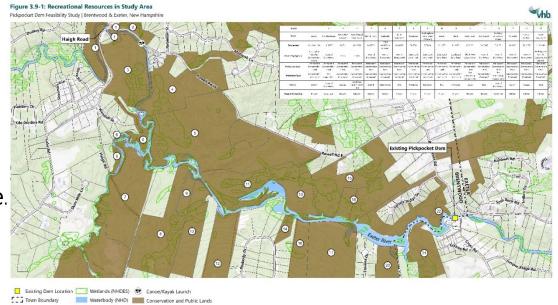
- Diadromous fish species rely on access to upstream freshwater river habitat
- Other fish species also present
- Dams are barriers to fish passage Both Upstream and Downstream
- Dam Modification alternatives would retain the existing fish ladder
- Dam Removal
 - Barrier removal and reshaped channel would improve fish passage conditions
 - Would reconnect 14.1 river miles of stream habitat
 - May 2024 Alewife reported at Pickpocket Ladder

Natural Resources

Dam Modification:

 Negligible change to existing wetlands, surrounding habitat and invasive species

Dam Removal:


- Would result in changes to habitat, wetlands, and natural communities, including:
 - Improve fish passage (existing fish ladder limits passage).
 - Improve water quality.
 - Restore "Natural Flow Regime" which drives riparian ecological diversity.
 - Would affect wetlands and floodplain forests that border the impoundment based on changing flood regimes
- Primary change would be shift in wetland cover type, but loss of wetland at periphery may occur
- Implement measures to limit spread of invasive species

Recreation

- Boating, fishing, swimming, snowmobiling, skating and bird watching
- Cartop boat launch at Haigh Road
- Public land at Pickpocket Dam and Peabody Drive
- Conservation easement land surrounds the impoundment
- Dam Modification: No impact to recreation opportunities
- Dam Removal:
 - Loss of open water, narrower and shallower boating conditions
 - Increase in angling due to improvement in fish passage.
 Different angling locations.

Cost Analysis

	\$861,200 \$974,500	Dam	Alt 2: Spillwa Replacement	•	Alt 3: Auxili Spillway	Alt 4: Dam Removal		
	Current	Future	Current Future Curre			Future		
Initial Capital Cost	\$2,090,200	\$2,365,200	\$7,132,600	\$7,410,900	\$2,153,300	\$2,252,200	\$1,468,000	
Capital Replacement Costs	\$861,200	\$974,500	\$2,978,600	\$3,053,300	\$887,200	\$927,900	\$0	
Operations and Maintenance	\$315,000	\$332,200	\$222,200	\$273,700	\$311,600	\$335,600	\$45,000	
Total Present Cost	\$3,266,400	\$3,671,900	\$10,293,500	\$10,737,900	\$3,352,100	\$3,515,700	\$1,513,000	

Public Involvement

Time	Item
March 28, 2011	Numerous presentations and discussions since receiving Letter of Deficiency from NHDES
April 22, 2021	Presentation on conceptual options to bring dam into compliance
May 18, 2023	Feasibility Study Update & NHDES Presentation on Dam Reclassification
Sept 21, 2023	Feasibility Study Update
Oct 2, 2023	Select Board Meeting: Feasibility Study Update & Review of NOAA Grant
Nov 29, 2023	Feasibility Study Update
Feb 20, 2024	Feasibility Study Draft Report available for 30-day public comment
Feb 27, 2024	Public Meeting: Presented on draft Feasibility Study & heard public comment & questions
March 21, 2024	Feasibility Study Update and Feasibility Study Public Comment Period Ends
April 30, 2024	Feasibility Study Completed
May 9, 2024	Feasibility Study Update

Environmental Permitting

NHDES Wetlands Permit (NH RSA 482-A)

- Required for impacts below top of bank or within wetlands
- Abutter notifications Direct Abutters
- Submissions through Exeter and Brentwood Town Clerks
- Coordination:
 - NH Natural Heritage Bureau (T&E Plant Species)
 - NH Fish and Game (T&E Animal Species)
 - Conservation Commissions
 - Exeter-Squamscott River Local Advisory Committee

US Army Corps of Engineers (Section 404 Clean Water Act)

- Required for impacts below ordinary high water and within wetlands
- Possibly authorized through the NH General Permit (NAE-2022-00849)
- Coordination:
 - USFWS
 - NH State Historic Preservation Office (NHDHR)

Additional Permitting

NHDES Water Quality Certification (CWA Section 401)

Triggered by USACE Permit

NHDES – Shoreland Water Quality Protection Act (RSA 483-B)

- Upland construction, excavation, or filling activities within the 250 ft of river
- Includes review of stormwater and clearing

NHDES - Alteration of Terrain (NH RSA 485-A:17)

Project may qualify for a General Permit by Rule under Env-Wq 1503.03(g)

NHDES Dam Bureau Safety Review (RSA 482)

- Dam Modification: Env-Wr 400, RSA 482:9 and 482:29
- Dam Removal Attachment to Wetlands Permit Application

FEMA - No Rise Certification

 Triggered by impacts to the regulatory floodway to verify the project would not raise base flood elevation

Cultural Resources

- Section 106 of the National Historic Preservation Act of 1966 (NHPA): Federal agencies must consider the effects on historic properties for projects they carry out, assist, fund, permit, license, or approve.
- Assignment of a Lead Federal Agency likely the Army Corps of Engineers

Process:

- Initiate via Request for Project Review to NH Division of Historic Resources (SHPO)
- Identify Historic Properties (In Progress)
 - Pickpocket Dam is Eligible for Listing on the National Register of Historic Places
 - Phase IA Archaeological Study found two Sensitive Areas; Phase IB recommended
- Assess Adverse Effects (Effect Memo)
- Resolve Adverse Effects (Memorandum of Agreement with mitigation)
- Consulting Parties may include SHPO, Tribes, local agencies, community groups, and others.

Public Comments and Responses

- Final Feasibility Study provides response to comments in Appendix H
 - Response to verbal comments grouped by subject to provide detailed response
 - Individual responses to written comments

Response to Verbal Comments

The Town of Exeter welcomes and appreciates the active participation and valuable insights shared by the community-at-large through public comments. To address the wide range of verbal comments and concerns made at various public meetings, we have grouped similar comments and questions into several categories. Please note that a unified response has been provided for each category, capturing common concerns and ideas. This approach ensures that we comprehensively address all shared perspectives. Even though individual replies are not provided for the verbal comments, every comment has been thoroughly reviewed and is being taken into account in the Town's decision-making process. Additionally, some comments have also been submitted in writing. All written comments have specific written responses found in Appendix H of the final Pickpocket Dam Feasibility Study.

1) Why has there been a lack of communication, transparency, abutter notification and stakeholder coordination as part of the Feasibility Study? And why hasn't the Pickpocket Dam been awarded the same level of public involvement as the Great Dam?

We acknowledge concerns regarding the project's schedule and perceived lack of transparency and communication regarding this project. The Town has been, and remains, committed to taking into account all public input as part of the feasibility study process to ultimately come into compliance the NHDES rules and regulations. To-date, all public meetings, presentations, and project documents specific to Pickpocket Dam have been made available on back to 2018. The Town will continue to post updates on its website.

I oppose the actions taken by the Town of Exeter Select Board, which allowed the River Advisory Committee (RAC) of the Town of Exeter to apply for a NOAA Grant to remove the Pickpocket Dam completely in order to improve fish passage on the Exeter River. The RAC did not engage or contact or inform stakeholders or property owners or the community about this NOAA grant, and applied for \$2MM to remove the dam entirely without talking with Exeter or Brentwood residents beforehand. This process of changing our town without engaging a full conversation on the impacts to the environment. the loss of this historical piece of Exeter, loss of recreational activity, the loss of wetlands, wildlife, and

The Exeter River has been a reservoir within Brentwood and Exeter for over 100 years. The Pickpocket Dam dates back to the 1600's and has been a low-risk dam until recently when the rainfall numbers changed due to the impact of climate change. The members of the Friends of Exeter River (which includes Brentwood residents) agree that this process needs to be SLOWED DOWN and reviewed with ALL stakeholders prior to any decisions being made on dam removal. After all, I believe the town line of Exeter and Brentwood runs down the middle of the existing dam, does it not?

In October, the River Advisory Committee posted a long list of questions during its meeting - these questions were on a piece of paper that ran floor to ceiling practically, and yet none of these questions have been answered due to limited time and another group meeting which followed this RAC meeting (they "needed the room".) Why aren't there multiple meetings scheduled in the town hall as there were for the community impact discussions re: the Great Dam?

The Town of Exeter River Advisory Committee sought approval for the NOAA grant to have money in place to remove the structure BEFORE VHB of Bedford engineers had completed the study of the Pickpocket Dam, and whether it could be modified to meet state requirements OR whether the dam should be removed. There are FEMA grants available to modify and repair dams, vs. complete removal. This covert action on the part of the Town of Exeter is unfair to hundreds of taxpavers, abutters, and C35.4 their friends and family who enjoy the river, the dam, and all that it brings to this community. No abutters to this day had been contacted by the Town of Exeter on this issue. I personally delivered notice to many abutters. The lack of transparency about the Pickpocket Dam is beyond reprehensible.

Less than 20 people combined are on the Town of Exeter Select Board and Town of Exeter River Advisory Committee and not all are for dam removal. There are over 15,000 people in the Town and all may be affected if those who lead continue to act with poor judgement and rush this through. We don't need hardheads here - we need reviews and input from all stakeholders who should have a say in the matter and love the river the way it is.

ng the public's involvemer

eral factors contributing to Action that the Town of E ss the dam's deficiencies. t has unique circumstance public meetings. Here, mu arry specific timelines and

Comment #	Date	Commenter	Comment	Response
C6.4	2/28/2024	Mark Rieder	"My neighborhood has 15 houses that use Geothermal from well water for heating and cooling the houses. The Geo systems use up to 10X the water compared with normal well use. Has this been considered in the well analysis for dam removal? I read the analysis stating that the dam removal will not affect wells in the area. Can the analysis include a statement such as, 'Geothermal system in the affected area were considered in the analysis.'	The geothern and found to The removal of deep bedrock geothermal of the aquifer is discussion of provided in S
C6.5	2/28/2024	Mark Rieder	"Is there any consideration for re-planting the newly exposed land with native species and control for the invasives? For Brentwood as well	Yes. As descri detailed design seeding the n

rmal wells based on the public records were evaluated to also be connected to the deep bedrock aquifer. l of the dam will not affect groundwater levels in the ck aguifer and therefore there will be no impact to the well water supply. Additionally, it was found that the systems are "open loop" and any water drawn from

that the dam removal will not affect wells in the area. Can the analysis include a statement such as, 'Geothermal system in the affected area were considered in the analysis'?"	the aquifer is also injected back into the aquifer. A more detailed discussion of the impact of dam removal on water supplies is provided in Section 3.5 of the Feasibility Study.
"is there any consideration for re-planting the newly exposed land with native species and control for the invasives? For Brentwood as well as Exeter?"	Yes. As described in Section 3.13 of the Feasibility Study, the detailed design of the dam removal alternative would include seeding the newly exposed land with native and appropriate species for land located in both Towns. Additional measures at the dam site may also be considered. These measures will help to limit the spread of invasives into the newly exposed land. There is currently no plan to address invasive species for the dam modification alternatives.
"After reading the report sent to Ms. Garnett it seems that no real in depth analysis has been done on our properties yet. In addition it sounds as if the potential volumes of water being used to justify removal of the dam area not being used to study erosion. I would insist that the same 2.5 times 100 year flood volumes be used for erosion studies as well."	VHB performed an analysis of potential changes in river characteristics along the entire length of the river for each alternative identified in the Feasibility Study. This includes the section of the Eveter River along Stoney Mater Rood. The flow rates used to meet dam safely requirements, are different than what is used to evaluate erosion and sediment transport. It is industry standard to evaluate erosion and sediment transport for the bankfull flow, the 2-year storm is typically used as an approximation of bankfull flow and is used to estimate sediment transport as the full flow and is used to estimate sediment transport as the full flow is considered to channel forming flow.
"Since the Pickpocket Dam is a run-off-the- river dam, how specifically would dam removal affect water temperature and dissolved oxygen levels downstream of the dam location?What, if any, other impacts would there be on water quality downstream?"	The Pkspocket Dam reduces water quality in the impoundment created by the dam. Impounded waters are typically prone to low Do conditions due to the oxygen demand caused by decomposition of organic material in the bottom waters. Additionally, impounded waters are warmer and therefore have lower Do saturation thresholds, with less opportunity for aeration and oxygen exchange in slow moving waters as compared to free-flowing waters with riffles. For example, with the reduced solar varieties water

Project Schedule & Funding

	Dam Removal NOAA Grant Successful	Dam Removal NOAA Grant Unsuccessful	Dam Modification		
Funding Secured	Spring 2024	Spring 2025	Spring 2025		
Begin Design Phase	Summer 2024	Summer 2025	Summer 2025		
Begin Permitting Phase	Winter 2025	Winter 2026	Winter 2026		
Begin Construction	Summer 2026	Summer 2027	Summer 2027		
Construction Complete	Fall 2026	Fall 2027	Fall 2027		

D	Task Name	Duration	Start	Finish	2024				2025				2026				2027			
	•				Qtr 1	Qtr 2	Qtr 3	Qtr 4	Qtr 1	Qtr 2	Qtr 3	Qtr 4	Qtr 1	Qtr 2	Qtr 3	Qtr 4	Qtr 1	Qtr 2	Qtr 3	Qtr 4
1	Pickpocket - NOAA Grant																			
2	Data Collection	66 days	Mon 7/1/24	Mon 9/30/24				1												
3	Final Design	349 days	Sun 9/1/24	Wed 12/31/25																
4	Environmental Permits	261 days	Wed 1/1/25	Wed 12/31/25					_											
5	Cultural Resources	261 days	Wed 1/1/25	Wed 12/31/25																
6	Bid Phase	64 days	Thu 1/1/26	Tue 3/31/26										1						
7	Construction	174 days	Wed 4/1/26	Mon 11/30/26																
8	Req for Action Deadline	1 day	Wed 12/1/27	Wed 12/1/27																3
9																				
10																				
11	Pickpocket - Funding Req'd																			
12	Final Study	9 days	Fri 4/19/24	Wed 5/1/24																
13	Obtain Town Funding	208 days	Sat 6/1/24	Tue 3/18/25																
14	Potential Grant Suppleme	175 days	Tue 10/1/24	Sun 6/1/25																
15	Data Collection	66 days	Tue 7/1/25	Tue 9/30/25																
16	Final Design	349 days	Mon 9/1/25	Thu 12/31/26																
17	Environmental Permits	261 days	Thu 1/1/26	Thu 12/31/26																
18	Cultural Resources			Thu 12/31/26																
19	Bid Phase		Fri 1/1/27	Tue 3/30/27																
20	Construction	175 days	Thu 4/1/27	Wed 12/1/27																-

